Modelling the Occurrence of the Novel Pandemic COVID-19 Outbreak– A Box and Jenkins Approach

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The corona virus disease 2019 (COVID-19) is a novel pandemic disease that spreads very fast and causes severe respiratory problem to its carrier and thereby results to death in some cases. In this research, we studied the trend, model Nigeria daily COVID-19 cases and forecast for the future occurrences in the country at large. We adopt the Box and Jenkins approach. The time plot showed that the cases of COVID-19 rises rapidly in recent time. KPSS test confirms the non-stationarity of the process (p < 0.05) before differencing. The test also confirmed the stationarity of the process (p > 0.05) after differencing. Various ARIMA (p,d,q) were examined with their respective AICs and Log-likelihood. ARIMA (1, 2, 1) was selected as the best model due to its least AIC (559.74) and highest log likelihood (−276.87). Both Shapiro-Wilk test and Box test performed confirm the fitness of the model (p > 0.05) for the series. Forecast for 30 days was then made for COVID-19 cases in Nigeria. Conclusively, the model obtained in this research can be used to model, monitor and forecast the daily occurrence of COVID-19 cases in Nigeria.

Article activity feed

  1. SciScore for 10.1101/2020.06.15.20131136: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.