Designed peptides as potential fusion inhibitors against SARA-CoV-2 coronavirus infection

This article has been Reviewed by the following groups

Read the full article

Abstract

Inspired by fusion-inhibitory peptides from heptad repeat 1 (HR1) and heptad repeat 2 (HR2) domains from human immuno-deficiency virus type 1 (HIV-1) envelope glycoprotein gp41 and severe acute respiratory syndrome-coronavirus (SARS-CoV) based on viral fusogenic mechanism in the present work, we provided a similar approach to design the synthesized peptides against the entry into host cells of SARA-CoV-2 virus that causes 2019 novel coronavirus disease (COVID-19). These peptides derived from HR1 and HR2 of SARA-CoV-2 spike protein were further tested for their interaction and potential fusion possibility through circular dichroism spectrum. Here we used the peptide COVID-2019-HR1P1 (40 amino acids) as the target, which was derived from HR1 of SARA-CoV-2 spike protein, while the designed peptides including COVID-2019-HR2P1 (37 amino acids), COVID-2019-HR2P2 (32 amino acids) and others derived from HR2 of SARA-CoV-2 were tested for their binding to COVID-2019-HR1P1. Interestingly, results showed that both COVID-2019-HR2P1 and COVID-2019-HR2P2 can form the complex with COVID-2019-HR1P1, respectively. This implied that these designed peptides could play an important role in blocking SARA-CoV-2 entry into mammalian host cells via viral fusogenic mechanism, and thus could be used for preventing SARA-CoV-2 infection.

Article activity feed

  1. SciScore for 10.1101/2020.06.09.142315: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.