Benchmarking Deep Learning Models and Automated Model Design for COVID-19 Detection with Chest CT Scans

This article has been Reviewed by the following groups

Read the full article

Abstract

COVID-19 pandemic has spread all over the world for months. As its transmissibility and high pathogenicity seriously threaten people’s lives, the accurate and fast detection of the COVID-19 infection is crucial. Although many recent studies have shown that deep learning based solutions can help detect COVID-19 based on chest CT scans, there lacks a consistent and systematic comparison and evaluation on these techniques. In this paper, we first build a clean and segmented CT dataset called Clean-CC-CCII by fixing the errors and removing some noises in a large CT scan dataset CC-CCII with three classes: novel coronavirus pneumonia (NCP), common pneumonia (CP), and normal controls (Normal). After cleaning, our dataset consists of a total of 340,190 slices of 3,993 scans from 2,698 patients. Then we benchmark and compare the performance of a series of state-of-the-art (SOTA) 3D and 2D convolutional neural networks (CNNs). The results show that 3D CNNs outperform 2D CNNs in general. With extensive effort of hyperparameter tuning, we find that the 3D CNN model DenseNet3D121 achieves the highest accuracy of 88.63% (F1-score is 88.14% and AUC is 0.940), and another 3D CNN model ResNet3D34 achieves the best AUC of 0.959 (accuracy is 87.83% and F1-score is 86.04%). We further demonstrate that the mixup data augmentation technique can largely improve the model performance. At last, we design an automated deep learning methodology to generate a lightweight deep learning model MNas3DNet41 that achieves an accuracy of 87.14%, F1-score of 87.25%, and AUC of 0.957, which are on par with the best models made by AI experts. The automated deep learning design is a promising methodology that can help health-care professionals develop effective deep learning models using their private data sets. Our Clean-CC-CCII dataset and source code are available at: https://github.com/HKBU-HPML/HKBU_HPML_COVID-19 .

Article activity feed

  1. SciScore for 10.1101/2020.06.08.20125963: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.