Temporal evolution of COVID-19 in the states of India using SIQR Model

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

COVID 19 entered during the last week of April 2020 in India has caused 3,546 deaths with 1,13,321 number of reported cases. Indian government has taken many proactive steps, including strict lockdown of the entire nation for more than 50 days, identification of hotspots, app-based tracking of citizens to track infected. This paper investigated the evolution of COVID 19 in five states of India (Maharashtra, UP, Gujrat, Tamil Nadu, and Delhi) from 1 st April 2020 to 20 th May 2020. Variation of doubling rate and reproduction number (from SIQR) with time is used to analyse the performance of the majorly affected Indian states. It has been determined that Uttar Pradesh is one of the best performers among five states with the doubling rate crossing 18 days as of 20 th May. Tamil Nadu has witnessed the second wave of infections during the second week of May. Maharashtra is continuously improving at a steady rate with its doubling rate reaching to 12.67 days. Also these two states are performing below the national average in terms of infection doubling rate. Gujrat and Delhi have reported the doubling rate of 16.42 days and 15.49 days respectively. Comparison of these states has also been performed based on time-dependent reproduction number. Recovery rate of India has reached to 40 % as the day paper is written.

Article activity feed

  1. SciScore for 10.1101/2020.06.08.20125658: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 7. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.