CoVID-19 in Singapore: Impact of Contact Tracing and Self-awareness on Healthcare Demand

This article has been Reviewed by the following groups

Read the full article

Abstract

Background

A great concern around the globe now is to mitigate the COVID-19 pandemic via contact tracing. Analyzing the control strategies during the first five months of 2020 in Singapore is important to estimate the effectiveness of contacting tracing measures.

Methods

We developed a mathematical model to simulate the COVID-19 epidemic in Singapore, with local cases stratified into 5 categories according to the conditions of contact tracing and self-awareness. Key parameters of each category were estimated from local surveillance data. We also simulated a set of possible scenarios to predict the effects of contact tracing and self-awareness for the following month.

Findings

During January 23 - March 16, 2020, the success probabilities of contact tracing and self-awareness were estimated to be 31% (95% CI 28%-33%) and 54% (95% CI 51%-57%), respectively. During March 17 - April 7, 2020, several social distancing measures (e.g., limiting mass gathering) were introduced in Singapore, which, however, were estimated with minor contribution to reduce the non-tracing reproduction number per local case ( R ι ,2 ). If contact tracing and self-awareness cannot be further improved, we predict that the COVID-19 epidemic will continue to spread in Singapore if R ι ,2 ≥ 1.5.

Conclusion

Contact tracing and self-awareness can mitigate the COVID-19 transmission, and can be one of the key strategies to ensure a sustainable reopening after lifting the lockdown.

Summary

We evaluate the efficiency of contact tracing and self-awareness in Singapore’s early-stage control of COVID-19. Then use a branching model to simulate and evaluate the possible prospective outcomes of Singapore’s COVID-19 control in different scenarios.

Article activity feed

  1. SciScore for 10.1101/2020.06.04.20122879: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.