Monitoring the post-containment COVID-19 crisis in Guadeloupe: Early-warning signals of destabilisation through bootstrapped probability density functions
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
We propose a method to detect early-warning information in relation with subtle changes occurring in the trend of evolution in data time series of the COVID-19 epidemic spread (e.g. daily new cases). The method is simple and easy to implement on laptop computers. It is designed to be able to provide reliable results even with very small amounts of data (i.e. ≈ 10 − 20). The results are given as compact graphics easy to interpret. The data are separated into two subsets: the old data used as control points to statistically define a "trend" and the recent data that are tested to evaluate their conformity with this trend. The trend is characterised by bootstrapping in order to obtain probability density functions of the expected misfit of each data point. The probability densities are used to compute distance matrices where data clusters and outliers are easily visually recognised. In addition to be able to detect very subtle changes in trend, the method is also able to detect outliers. A simulated case is analysed where R 0 is slowly augmented (i.e. from 1.5 to 2.0 in 20 days) to pass from a stable damped control of the epidemic spread to an exponentially diverging situation. The method is able to give an early warning signal as soon as the very beginning of the R 0 variation. Application to the data of Guadeloupe shows that a small destabilising event occurred in the data near April 30, 2020. This may be due to an increase of R 0 ≈ 0.7 around April 13-15, 2020.
Article activity feed
-
SciScore for 10.1101/2020.05.29.20117333: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank…
SciScore for 10.1101/2020.05.29.20117333: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
