COVID-19 (SARS-CoV-2) Ventilator Resource Management Using a Network Optimization Model and Predictive System Demand

This article has been Reviewed by the following groups

Read the full article

Abstract

The COVID-19 (SARS-CoV-2) pandemic is overwhelming global healthcare delivery systems due to the exponential spike in cases requiring specialty tests, facilities and equipment, including complex, precision devices like ventilators. In particular, the surge in critically ill patients has revealed a significant deficiency in regional availability of respiratory care ventilators. The authors offer a mathematical framework for ventilator distribution under scarcity conditions using an optimized network model and solver. The framework is interoperable with existing COVID-19 healthcare demand models and scales for different user-defined system sizes, including hospital networks, city, state, regional and national-scale prioritization. The authors’ approach improves current capabilities for medical device resource management within the existing incident command system while accounting for availability of devices, ventilation treatment time periods, disinfection and cleaning between patients, as well as shipping logistics time. The authors present a proof of concept using a high fidelity COVID-19 data set from Colorado, discusses how to scale nationally, and emphasizes the importance of applying ethical human-in-the-loop decision making when using this or similar approaches to managing medical device resources during epidemic emergencies.

Article activity feed

  1. SciScore for 10.1101/2020.05.26.20113886: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.