Pooling nasopharyngeal swab specimens to increase testing capacity for SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article

Abstract

The recent emergence of SARS-CoV-2 has lead to a global pandemic of unprecedented proportions. Current diagnosis of COVID-19 relies on the detection of SARS-CoV-2 RNA by RT-PCR in upper and lower respiratory specimens. While sensitive and specific, these RT-PCR assays require considerable supplies and reagents, which are often limited during global pandemics and surge testing. Here, we show that a nasopharyngeal swab pooling strategy can detect a single positive sample in pools of up to 10 samples without sacrificing RT-PCR sensitivity and specificity. We also report that this pooling strategy can be applied to rapid, moderate complexity assays, such as the BioFire COVID-19 test. Implementing a pooling strategy can significantly increase laboratory testing capacity while simultaneously reducing turnaround times for rapid identification and isolation of positive COVID-19 cases in high risk populations.

Article activity feed

  1. SciScore for 10.1101/2020.05.22.110932: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    RandomizationPost clinical testing, specimens were de-identified and randomly assigned into pools of 10 to create 50 distinct pools (the 50th pool contained 4 specimens diluted in 0.6 ml of transport media).
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    All statistical analyses were conducted using Graphpad Prism 6.0.
    Graphpad Prism
    suggested: (GraphPad Prism, RRID:SCR_002798)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.