Estimation Of State Variables And Model Parameters For The Evolution Of COVID-19 In The City Of Rio de Janeiro

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Evolution model is based on that used by Hernandez et al., which considers the following groups: Susceptible, Incubating, Asymptomatic, Symptomatic, Hospitalized, Recovered and Accumulated deaths. Evolution model considers the possibility of infections from asymptomatic, symptomatic and hospitalized individuals. Evolution model considers the possibility that individuals who have recovered from the disease become symptomatic again. Observation model accounts for underreport of cases and deaths. Observation model accounts for delays in reporting cases and deaths. Model parameters were initially estimated with the Markov Chain Monte Carlo (MCMC) method, by using the data of the city of Rio de Janeiro from February 28, 2020 to April 29, 2020. These estimations were used as initial input values for the solution of the state estimation problem for the city of Rio de Janeiro. Algorithm of Liu & West for the Particle Filter was used for the solution of the state estimation problem because it allows the simultaneous estimation of state variables and model parameters. State estimation problem was solved with the data of the city of Rio de Janeiro, from February 28, 2020 to May 05, 2020. Monte Carlo simulations were run for 20 future days, considering uncertainties in the model parameters and state variables. Initial conditions were given by the state variables and corresponding distributions estimated with the particle filter on May 05, 2020. Distributions of the model parameters were also given by the estimations obtained for this date. Data of the city of Rio de Janeiro, from May 06, 2020 to May 15, 2020, were used for the validation of the solution of the state estimation problem. The present model, with the parameters obtained with the Particle Filter, accurately fits the number of reported cases and the number of reported deaths, for 10 days ahead of the period used for the solution of the state estimation problem. The Ratio of Infected Individuals per Reported Cases was around 15 on May 05, 2020. The Indexes of Under-Reported Cases and Deaths were around 12 and 2, respectively, on May 05, 2020. The Effective Reproduction Number was around 1.6 on February 28, 2020 and dropped to around 0.9 on May 05, 2020. However, uncertainties related to this parameter are large and the effective reproduction number is between 0.3 and 1.5, at the 95% credibility level. The particle filter must be used to periodically update the estimation of state variables and model parameters, so that future predictions can be made. Day 0 is February 28, 2020.

Article activity feed

  1. SciScore for 10.1101/2020.05.21.20108407: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.