Predicting the COVID-19 positive cases in India with concern to Lockdown by using Mathematical and Machine Learning based Models
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
In this study, we analyze the number of infected positive cases of COVID-19 outbreak with concern to lockdown in India in the time window of February 11th 2020 to Jun 30th 2020. The first case in India was reported in Kerala on January 30th 2020. To break the chain of spreading, Government announced a nationwide lockdown on March 24th 2020, which is increased two times. The Ongoing lockdown 3.0 is over on May 18th, 2020. We derived how the lockdown relaxation is going to impact on containment of the outbreak. Here the Exponential Growth Model has been used to derive the epidemic curve based on the data collected from February 11th 2020, to May 11th 2020, and the Machine Learning based Linear Regression model that gives the epidemic curve to predict the cases with the continuous flow of the lockdown. We estimate that if the lockdown is continuing with more relaxation, then the estimated infected cases reach up to 1.16 crores by June 30th 2020, and the lockdown would persist with current restriction, then the expected predicted infected cases are 5.69 lacs. The Exponential Growth Model and the Linear Regression Model are advantageous to predict the number of affected cases of COVID-19. These models can be used for forecasting in long term intervals. It shows from our result that lockdown with certain restriction has a vital role in preventing the spreading of this epidemic in this current situation.
Article activity feed
-
SciScore for 10.1101/2020.05.16.20104133: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank…
SciScore for 10.1101/2020.05.16.20104133: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-