Mechanistic modeling of the SARS-CoV-2 and immune system interplay unravels design principles for diverse clinicopathological outcomes

This article has been Reviewed by the following groups

Read the full article

Abstract

The disease caused by SARS-CoV-2 is a global pandemic that threatens to bring long-term changes worldwide. Approximately 80% of infected patients are asymptomatic or have mild symptoms such as fever or cough, while rest of the patients have varying degrees of severity of symptoms, with 3-4% mortality rate. Severe symptoms such as pneumonia and Acute Respiratory Distress Syndrome can be caused by tissue damage mostly due to aggravated and unresolved innate and adaptive immune response, often resulting from a cytokine storm. However, the mechanistic underpinnings of such responses remain elusive, with an incomplete understanding of how an intricate interplay among infected cells and cells of innate and adaptive immune system can lead to such diverse clinicopathological outcomes. Here, we use a dynamical systems approach to dissect the emergent nonlinear intra-host dynamics among virally infected cells, the immune response to it and the consequent immunopathology. By mechanistic analysis of cell-cell interactions, we have identified key parameters affecting the diverse clinical phenotypes associated with COVID-19. This minimalistic yet rigorous model can explain the various phenotypes observed across the clinical spectrum of COVID-19, various co-morbidity risk factors such as age and obesity, and the effect of antiviral drugs on different phenotypes. It also reveals how a fine-tuned balance of infected cell killing and resolution of inflammation can lead to infection clearance, while disruptions can drive different severe phenotypes. These results will help further the case of rational selection of drug combinations that can effectively balance viral clearance and minimize tissue damage simultaneously.

Significance Statement

The SARS-CoV-2 pandemic has already infected millions of people, and thousands of lives have been lost to it. The pandemic has already tested the limits of our public healthcare systems with a wide spectrum of clinicopathological symptoms and outcomes. The mechanistic underpinnings of the resultant immunopathology caused by the viral infection still remains to be elucidated. Here we propose a minimalistic but rigorous description of the interactions of the virus infected cells and the core components of the immune system that can potentially explain such diversity in the observed clinical outcomes. Our proposed framework could enable a platform to determine the efficacy of various treatment combinations and can contributes a conceptual understanding of dynamics of disease pathogenesis in SARS-CoV-2 infections.

Article activity feed

  1. SciScore for 10.1101/2020.05.16.097238: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.