Quantitative Analysis of the Effectiveness of Public Health Measures on COVID-19 Transmission

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Although COVID-19 has spread almost all over the world, social isolation is still a controversial public health policy and governments of many countries still doubt its level of effectiveness. This situation can create deadlocks in places where there is a discrepancy among municipal, state and federal policies. The exponential increase of the number of infectious people and deaths in the last days shows that the COVID-19 epidemics is still at its early stage in Brazil and such political disarray can lead to very serious results. In this work, we study the COVID-19 epidemics in Brazilian cities using early-time approximations of the SIR model in networks. Different from other works, the underlying network is constructed by feeding real-world data on local COVID-19 cases reported by Brazilian cities to a regularized vector autoregressive model, which estimates directional COVID-19 transmission channels (links) of every pair of cities (vertices) using spectral network analysis. Our results reveal that social isolation and, especially, the use of masks can effectively reduce the transmission rate of COVID-19 in Brazil. We also build counterfactual scenarios to measure the human impact of these public health measures in terms of reducing the number of COVID-19 cases at the epidemics peak. We find that the efficiency of social isolation and of using of masks differs significantly across cities. For instance, we find that they would potentially decrease the COVID-19 epidemics peak in Sao Paulo (SP) and Brasilia (DF) by 15% and 25%, respectively. We hope our study can support the design of further public health measures.

Article activity feed

  1. SciScore for 10.1101/2020.05.15.20102988: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.