COVID-19 in England: spatial patterns and regional outbreaks
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Aims: to investigate the spatiotemporal distribution of COVID-19 cases in England; to provide spatial quantification of risk at a high resolution; to provide information for prospective antigen and serological testing. Approach: We fit a spatiotemporal Negative Binomial generalised linear model to Public Health England SARS-CoV-2 testing data at the Lower Tier Local Authority region level. We assume an order-1 autoregressive model for case progression within regions, coupling discrete spatial units via observed commuting data and time-varying measures of traffic flow. We fit the model via maximum likelihood estimation in order to calculate region-specific risk of ongoing transmission, as well as measuring regional uncertainty in incidence. Results: We detect marked heterogeneity across England in COVID-19 incidence, not only in raw estimated incidence, but in the characteristics of within-region and between-region dynamics of PHE testing data. There is evidence for a spatially diverse set of regions having a higher daily increase of cases than others, having accounted for current case numbers, population size, and human mobility. Uncertainty in model estimates is generally greater in rural regions. Conclusions: A wide range of spatial heterogeneity in COVID-19 epidemic distribution and infection rate exists in England currently. Future work should incorporate fine-scaled demographic and health covariates, with continued improvement in spatially-detailed case reporting data. The method described here may be used to measure heterogeneity in real-time as behavioural and social interventions are relaxed, serving to identify "hotspots" of resurgent cases occurring in diverse areas of the country, and triggering locally-intensive surveillance and interventions as needed. Caveats: There is general concern over the ability of PHE testing data to capture the true prevalence of infection within the population, though this approach is designed to provide measures of spatial prevalence based on testing that can be used to guide further future testing effort. Now-casts of epidemic characteristics are presented based on testing data alone (as opposed to "true" prevalence in any one area). The model used in this analysis is phenomenological for ease and speed of principled parameter inference; we choose the model which best fits the current spatial case timeseries, without attempting to enforce "SIR"-type epidemic dynamics.
Article activity feed
-
SciScore for 10.1101/2020.05.15.20102715: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2020.05.15.20102715: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-