Two mutations P/L and Y/C in SARS-CoV-2 helicase domain exist together and influence helicase RNA binding

This article has been Reviewed by the following groups

Read the full article

Abstract

RNA helicases play pivotal role in RNA replication by catalysing the unwinding of complex RNA duplex structures into single strands in ATP/NTP dependent manner. SARS coronavirus 2 (SARS-CoV-2) is a single stranded positive sense RNA virus belonging to the family Coronaviridae . The viral RNA encodes non structural protein Nsp13 or the viral helicase protein that helps the viral RNA dependent RNA polymerase (RdRp) to execute RNA replication by unwinding the RNA duplexes. In this study we identified a novel mutation at position 541of the helicase where the tyrosine (Y) got substituted with cytosine (C). We found that Y541C is a destabilizing mutation increasing the molecular flexibility and leading to decreased affinity of helicase binding with RNA. Earlier we had reported a mutation P504L in the helicase protein for which had not performed RNA binding study. Here we report that P504L mutation leads to increased affinity of helicase RNA interaction. So, both these mutations have opposite effects on RNA binding. Moreover, we found a significant fraction of isolate population where both P504L and Y541C mutations were co-existing.

Article activity feed

  1. SciScore for 10.1101/2020.05.14.095224: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Sequence Alignments: The sequences with respect to SARS-CoV-2 helicase were aligned using multiple sequence alignment tool of CLUSTAL Omega in
    CLUSTAL Omega
    suggested: (Clustal Omega, RRID:SCR_001591)
    Protein domain search and motif scan were performed using PROSITE (ExPASy Bioinformatics resource portal) and MOTIF search servers respectively.
    PROSITE
    suggested: (PROSITE, RRID:SCR_003457)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.