Forecasting the COVID-19 Pandemic with Climate Variables for Top Five Burdening and Three South Asian Countries

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background: The novel coronavirus (COVID-19) is now in a horrific situation around the world. Prediction about the number of infected and death cases may help to take immediate action to prevent the epidemic as well as control the situation of a country. The ongoing debate about the climate factors may need more validation with more studies. The climate factors of the top-five affected countries and three south Asian countries have considered in this study to have a real-time forecast and robust validation about the impact of climate variables. Methods: The ARIMA model have included to model the univariate cumulative confirmed and death cases separately. The MLP, ELM and likelihood-based GLM count time series also considered as they consider the external variables as exogenous regressors. As the death count includes zero itself, zero-inflated count time series model has included instead of likelihood-based GLM. The better fitting of the ARIMA model will validate the underwhelm of meteorological factors was the initial hypothesis. The best model has identified through the application and comparison with the real data points. Results: The results depict that there is an influence of meteorological variables like temperature and humidity mostly for all the selected countries cumulative confirm cases excluding Italy and Sri-Lanka. However, the best models for deaths count of each country also identify the impact of meteorological variables for each country. Conclusion: The authors make the sixty days ahead forecast for each country which will be beneficial for the policymakers.

Article activity feed

  1. SciScore for 10.1101/2020.05.12.20099044: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a protocol registration statement.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.