Comparison of SARS-CoV-2 Indirect and Direct Detection Methods

This article has been Reviewed by the following groups

Read the full article

Abstract

The COVID-19 pandemic caused by the SARS-CoV-2 virus has placed extensive strain on RNA isolation and RT-qPCR reagents. Rapid development of new test kits has helped to alleviate these shortages. However, comparisons of these new detection systems are largely lacking. Here, we compare indirect methods that require RNA extraction, and direct RT-qPCR on patient samples. For RNA isolation we compared four different companies (Qiagen, Invitrogen, BGI and Norgen Biotek). For detection we compared two recently developed Taqman-based modules (BGI and Norgen Biotek), a SYBR green-based approach (NEB Luna Universal One-Step Kit) with published and newly-developed primers, and clinical results (Seegene STARMag RNA extraction system and Allplex 2019-nCoV RT-qPCR assay). Most RNA isolation procedures performed similarly, and while all RT-qPCR modules effectively detected purified viral RNA, the BGI system proved most sensitive, generating comparable results to clinical diagnostic data, and identifying samples ranging from 65 copies – 2.1×10 5 copies of viral Orf1ab/μl. However, the BGI detection system is ∼4x more expensive than other options tested here. With direct RT-qPCR we found that simply adding RNase inhibitor greatly improved sensitivity, without need for any other treatments (e.g. lysis buffers or boiling). The best direct methods were ∼10 fold less sensitive than indirect methods, but reduce sample handling, as well as assay time and cost. These studies will help guide the selection of COVID-19 detection systems and provide a framework for the comparison of additional systems.

Article activity feed

  1. SciScore for 10.1101/2020.05.12.092387: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board StatementIRB: Patient samples: Samples were obtained from the MSH/UHN clinical diagnostics lab with approvals from the Research Ethics Boards (REB #20-0078-E) of Mount Sinai Hospital in Toronto, Canada.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    SYBR green RT-qPCR detection: Primer pairs were designed using PrimerQuest software, and purchased from IDT.
    PrimerQuest
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • No conflict of interest statement was detected. If there are no conflicts, we encourage authors to explicit state so.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.