Estimating the Global Infection Fatality Rate of COVID-19
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
COVID-19 has become a global pandemic, resulting in nearly three hundred thousand deaths distributed heterogeneously across countries. Estimating the infection fatality rate (IFR) has been elusive due to the presence of asymptomatic or mildly symptomatic infections and lack of testing capacity. We analyze global data to derive the IFR of COVID-19. Estimates of COVID-19 IFR in each country or locality differ due to variable sampling regimes, demographics, and healthcare resources. We present a novel statistical approach based on sampling effort and the reported case fatality rate of each country. The asymptote of this function gives the global IFR. Applying this asymptotic estimator to cumulative COVID-19 data from 139 countries reveals a global IFR of 1.04% (CI: 0.77%,1.38%). Deviation of countries' reported CFR from the estimator does not correlate with demography or per capita GDP, suggesting variation is due to differing testing regimes or reporting guidelines by country. Estimates of IFR through seroprevalence studies and point estimates from case studies or sub-sampled populations are limited by sample coverage and cannot inform a global IFR, as mortality is known to vary dramatically by age and treatment availability. Our estimated IFR aligns with many previous estimates and is the first attempt at a global estimate of COVID-19 IFR.
Article activity feed
-
SciScore for 10.1101/2020.05.11.20098780: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this …
SciScore for 10.1101/2020.05.11.20098780: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-