Text Mining Approach to Analyze Coronavirus Impact: Mexico City as Case of Study
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The epidemiological outbreak of a novel coronavirus (2019-nCoV or Covid-19) in China, and its rapid spread, gave rise to the first pandemic in the digital age. Derived from this fact that has surprised humanity, many countries started with different strategies in order to stop the infection. In this context, one of the greatest challenges for the scientific community is monitoring (real time) the global population to get immediate feedback of what is happening with the people during this public health contingency. An alternative interesting and affordable for the materialization of the aforementioned are the social networks. In a social network, the persons can act as sensors/information not only of personal data but also data derived from their behavior. This paper aims to analyze the publications of people in Mexico using a Text Mining approach. Specifically, Mexico City is presented as a case study to help understand the impact on society of the spread of Covid-19.
Article activity feed
-
SciScore for 10.1101/2020.05.07.20094466: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransp…SciScore for 10.1101/2020.05.07.20094466: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-