A Modified ACE2 peptide mimic to block SARS-CoV2 entry

This article has been Reviewed by the following groups

Read the full article

Abstract

A 23-residue peptide fragment that forms a part of the α -1 helix of the ACE2 peptidase domain, the recognition domain for SARS-CoV2 on the ACE2 receptor, holds the potential as a drug to block the viral receptor binding domain (RBD) from forming a complex with ACE2. The peptide has recently been shown to bind the viral RBD with good efficiency. Here, we present a detailed analysis of the energetics of binding of the peptide to the SARS-CoV2 RBD. We use equilibrium molecular dynamics simulation to study the dynamics of the complex. We perform end-state binding energy calculations to gain a residue-level insight into the binding process and use the information to incorporate point mutations into the peptide. We demonstrate using binding energy calculations that the peptide with certain point mutations, especially E17L, shows a stronger binding to the RBD as compared to the wild type peptide. We propose that the modified peptide will thus be more efficient in blocking RBD-ACE2 binding.

Article activity feed

  1. SciScore for 10.1101/2020.05.07.082230: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.