Stable kinetochore–microtubule attachments restrict MTOC position and spindle elongation in acentrosomal oocytes

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

Log in to save this article

Abstract

In mouse oocytes, acentriolar MTOCs functionally replace centrosomes and act as microtubule nucleation sites. Microtubules nucleated from MTOCs initially assemble into an unorganized ball-like structure, which then transforms into a bipolar spindle carrying MTOCs at its poles, a process called spindle bipolarization. In mouse oocytes, spindle bipolarization is promoted by kinetochores but the mechanism by which kinetochore–microtubule attachments contribute to spindle bipolarity remains unclear. This study demonstrates that the stability of kinetochore–microtubule attachment is essential for confining MTOC positions at the spindle poles and for limiting spindle elongation. MTOC sorting is gradual and continues even in the metaphase spindle. When stable kinetochore–microtubule attachments are disrupted, the spindle is unable to restrict MTOCs at its poles and fails to terminate its elongation. Stable kinetochore fibers are directly connected to MTOCs and to the spindle poles, and thus may serve as a measure that defines proper spindle length. These findings reinforce the hypothesis that kinetochores act as scaffolds for acentrosomal spindle bipolarity.

Article activity feed

  1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Reply to the reviewers

    First of all, we thank all reviewers for their constructive suggestions and comments.

    Reviewer #1 (Evidence, reproducibility and clarity (Required)):

    This group has been at the forefront recently of using imaging technologies to understand how chromosome segregation is coordinated in mammalian oocytes, and why errors occur. In the current paper they examine the dynamics of microtubule organising centres (which effectively replace centrioles/centrosomes in oocytes) in MI. The imaging of oocytes in this paper is beautiful. The major findings are (1) that MTOCs that are supposed to be at the spindle pole sometimes end up at the spindle equator, and this is documented very beautifully and (2) the correct positioning of MTOCs at the spindle pole appears to require kinetochore microtubules, as indicated by experiments manipulating the kinetochore component NDC80.

    We appreciate the reviewer’s comment and clear description of our study.

    **Major Comments**

    As such the major claims of the paper are basically well supported. However, the analyses are is almost entirely restricted to prometaphase/metaphase, and the conclusions are relatively limited. The salient omission is any analysis of MTOC/chromosome relationship during anaphase. Were the paper to be extended to determine whether the lingering of MTOCs at the spindle equator is related to chromosome segregation error, that would increase the reach and importance of the work substantially. Specifically:

    Can tracking experiments be performed to determine whether the chromosome that shows movement similarities to the errant MTOC is more/less likely to missegregate? Complete tracking as these authors are expert at should achieve this, or photo-labelling the desired chromosome.

    Thank you for your comment. In our experimental system, oocytes rarely exhibit chromosome segregation errors (

    Can the position of MTOCs (proportion that linger at the equator) be manipulated in the absence of other defects to determine whether this increases errors (lagging at anaphase, metaphase-II chromosome counting spreads)?

    We agree with the reviewer that a specific manipulation of MTOC positions is exactly what we would need to investigate the significance of central MTOCs. Unfortunately, there are currently no tools available to specifically manipulate MTOC positions without other defects. Therefore, the significance of central MTOCs is currently unclear. In the revised manuscript, we will state these points in Discussion.

    The above analysis would have to be well supported by controls showing that these constructs are having no impact on normal anaphase (proportion of oocytes completing meiosis-I, likelihood of lagging chromosomes etc).

    Thank you for the comment. As we answered above, control oocytes rarely exhibit chromosome segregation errors or lagging chromosomes (

    Related to the above, though I appreciate a fixed metaphase image of MTOC immunofluorescence is presented, the paper is about the dynamics of MTOCs and thus nonetheless relies heavily on the live imaging of cep192. The core results should be confirmed using another (substantially different) MTOC probe. *This final comment applies to the current metaphase data, regardless of whether the study is ultimately extended*

    Thank you for the suggestion. We will confirm the dynamics of MTOCs at metaphase with mEGFP-Cdk5Rap2, another established marker of MTOCs.

    Reviewer #1 (Significance (Required)):

    As explained above, as presented this paper is largely scientifically sound, but far more limited in scope than this groups other recent papers. As explained above, the paper would be made more impactful and the readership broadened if a relationship between MTOC position/movement and segregation problems were established. Or on the other hand if it were established why some MTOCs sometimes linger at the spindle equator. Whilst to my knowledge this is the first time that equator MTOCs have been documented so carefully, oocyte cell biologists may not find the core observation that MTOCs are occasionally at the spindle equator extremely surprising.

    Thank you for your helpful suggestions. Due to lack of tools to specifically manipulate MTOC positions, we are unfortunately not able to directly address whether MTOC position/movement contributes to chromosome segregation problems. On the other hand, we are currently investigating to answer your important question ‘why some MTOCs sometimes linger at the spindle equator’. We speculate that MTOCs become central due to unstable kinetochore-microtubule attachments, which are predominantly observed at early metaphase in normal oocytes. To test this idea, we are currently investigating whether the appearance of central MTOCs are prevented by forced stabilization of kinetochore-microtubule attachments with Ndc80-9A. Our pilot analysis thus far supports this idea. In light of your suggestions, we will incorporate the results into the revised manuscript.

    Reviewer #2 (Evidence, reproducibility and clarity (Required)):

    I am commenting on the work of Courtois et al. as an expert in the biochemistry of spindle formation with a focus on acentriolar assembly.

    First and foremost, this a technically excellent study with a number of very interesting and well-documented observations, which are highly relevant for our understanding of the mechanisms of acentriolar spindle formation in the mouse oocyte model. In principle, the manuscript is in a very mature state. However, my major concern at this point would be that there is a break in the story. It starts describing the (very interesting) observation of "central MTOCs". After thoroughly investigating how these behave, the authors stop and look at overall MTOCs distribution after loss of stable MT-kinetochore interactions based on oocytes expressing the Ndc80_9D mutant instead of wt Ndc80. The two parts are experimentally and conceptually not well connected.

    We appreciate your comments on our techniques and novel observations in this study, and thank you for your helpful suggestions.

    Answering the following questions may help to further develop the paper:

    If I understand the arguments correctly, central MTOCs are an "accident" on the way to complete meiosis I spindle formation, which will eventually be corrected and all MTOCs clustered at the poles. Thus, they may serve as an assay for spindle assembly fidelity and kinetics (?). At this point, the reader is left with the observation without efforts to explain the meaning of this observation, ideally experimentally, or at least in a valid discussion.

    Thank you for your thoughtful comment. We agree that we should clearly explain our view on central MTOCs. We indeed speculate that central MTOCs are an “accident” due to unstable kinetochore-microtubule attachments, which are normally pronounced at early metaphase.

    We will revise the manuscript as follows: (1) Following the section for the observation of central MTOCs, we will state our hypothesis that central MTOCs may appear due to unstable kinetochore–microtubule attachments. (2) We will introduce our experiment of the manipulation of kinetochore–microtubule attachment stability as a test for our hypothesis. (3) We will present new results of our analysis for the effects of kinetochore–microtubule attachment stability on the appearance of central MTOCs (please see below).

    Enthusiasm for the technically excellent experiments using the Ndc80 variants are somewhat reduced as conclusions from these experiments are published in the parallel paper of the same laboratory (Yoshida et al.). Due to my opinion, it may thus be even more important to connect these observations with the first part described central MTOCs and to clarify their significance.

    Thank you for the important suggestion.

    First, we agree that we should connect our observations of central MTOCs to the phenotypes of Ndc80 manipulations. To do this, we will reanalyze our dataset to quantify the effects of Ndc80 manipulations on central MTOCs. Our pilot analysis thus far suggests that the forced stabilization of kinetochore–microtubule attachments by Ndc80-9A reduces the appearance of central MTOCs. This would support our idea that central MTOCs appear due to unstable kinetochore–microtubule attachments.

    Second, we agree with the reviewer that experimental clarification of the significance of central MTOCs would be nice. However, as outlined above, we unfortunately have no tool to directly address the significance of MTOC positioning in the fidelity of spindle assembly and chromosome segregation. Although we assume that MTOC positioning is critical for spindle assembly fidelity, as generally thought based on previous studies (Breuer et al., 2010; Clift and Schuh, 2015; Schuh and Ellenberg, 2007), the significance of MTOC positioning in spindle assembly remains uncertain, as you (and also the reviewer 1) point out. We will discuss these points in the revised manuscript.

    Shown if in Fig. 3B but not fully explained: How does the distribution of what is defined as central MTOCs behave in Ndc80_wt and Ndc80_9A mutant oocytes? Do the variants differ, i.e. are there fewer, or less persistent central MTOCs in the 9A mutant? Would they differ in kinetics of appearance and "rescue" to the poles?

    Thank you for the question. As outlined above, we will reanalyze our dataset to quantify the effects of Ndc80-9A on the behavior of central MTOCs. Our pilot analysis suggests that the forced stabilization of kinetochore–microtubule attachments suppresses the appearance of central MTOCs.

    Similarly: is there a correlation of central MTOC appearance, Ndc80 phosphorylation/stability of kinetochore attachment and Anaphase I onset? The authors mention that oocytes expressing the 9A mutant go faster into Anaphase.

    Thank you for this comment. First, we will investigate whether the levels of Ndc80 phosphorylation at kinetochores has any correlations to the distance to central MTOCs. Second, we will address whether microtubules connect kinetochores to central MTOCs. Third, we will perform the tracking of chromosomes that showed correlated motions to closely positioned MTOCs until anaphase onset.

    The observation that "central MTOCs exhibited correlated motions with closely positioned kinetochores" is poorly defined, yet an important observation. Does this mean some sort of short k-fibers remain to connect central MTOCs and kinetochores? Wouldn't one expect that the loss of stable end-on-attachment causes MTOCs to become central? How does this fit into a/the model?

    We believe these concerns will be addressed by the experiments/analyses proposed above. First, we will check if central MTOCs are connected to kinetochores by microtubules. Second, we indeed speculate that loss of stable kinetochore-microtubule attachment allows MTOCs to become central. We will test this idea by quantifying the appearance of central MTOCs in Ndc80-9A-expressing oocytes.

    Along the same lines: The authors hype their conclusion that kinetochores dominate meiosis I spindle formation based on the observation that loss of kinetochore functions results in less well-organized spindle poles and worse MTOC "confinement". This may mean that kinetochores, together with MTOCs, maintain stable k-fibers in meiosis, as shown here and in Yoshida et al. When one or the other end of k-fibers is destabilized (loss of end-on-attachment, loss of MTOC attachment), the fibers collapse and the remaining minus-or-plus-end associated structure loses its destination. We then see central MTOCs and/or kinetochores at poles. In this respect, the interpretation / discussion should be less "kinetochore-centered".

    We agree with your thoughtful comment that the regulations of minus-ends (e.g. MTOCs) and of plus-ends (e.g. kinetochores) are equally relevant for spindle bipolarization. We will tone down our kinetochore-centered view in the Abstract and Discussion and revise them into more balanced statements.

    Is there any way to determine the efficiency of Ndc80 knockdown in the gene replacement respective experiment? I share the view of the authors that their method may be more efficient and may explain apparent discrepancies to previous studies on Ndc80-9A (Guy and Homer, 2013) with more dramatic effects on spindle geometry. However, at that point, this remains speculative. For instance, one may also speculate vice versa that the ko strategy used here is less efficient in a maternally dominated system and leaves behind more wt Ndc80, which better compensates defects seen in the 9A mutant.

    Our gene deletion strategy (Zp3-Cre Ndc80f/f) resulted in >90% depletion of the Ndc80 protein (estimated by Western blot; Supplementary Figure 1c in Yoshida et al, Nat Commun 2020). On the other hand, Gui and Homer report that their morpholino-based depletion strategy resulted in 60–70% depletion of the Ndc80 protein (estimated by Western blot; Figure 1B in Gui and Homer, Dev Cell 2013). Thus, the depletion was more efficient in our experimental system. We will add this information in the manuscript.

    Reviewer #2 (Significance (Required)):

    Courtois et al present data on mechanisms governing spindle assembly in mouse oocytes. Mouse oocytes serve as model system for spindle formation in the absence of centriole-based MTOCs. At the onset of meiosis I, numerous MTOCs form, which shape a mass ("ball") of MT nucleated around chromatin into a bipolar structure. Accumulating evidence indicates that kinetochores play an important role in acentriolar spindle formation in mouse oocytes, yet the mechanisms behind kinetochore action remains unclear.

    Here, Courtois et al. analyze spindle formation in live mouse oocytes using 3D-time-lapse imaging. They use fluorescently tagged Cep192 to track MTOCs and Histone H2B or CENP-C to visualize chromatin or kinetochores. In the first part, the authors deal with the appearance of "central MTOCs", i.e. aggregates of centrosomal protein(s) that, apparently, fail to remain stably integrated into the spindle pole clusters on MTOCs during spindle formation. The authors convincingly demonstrate that these central MTOCs can be seen in the majority of spindles investigated. They demonstrate that central MTOCs generally come from positions at poles from where they "fall back" towards chromosomes. Central MTOCs may even cross the spindle and end up at opposite poles from where they originated from. Interestingly, central MTOCs are often found next to kinetochores.

    In the second part, the authors focus on the role of kinetochores and their stable MT attachment for spindle formation in general and bipolarity/pole organization in particular. The same lab has published data on the role of kinetochores in meiosis I spindle very recently (Yoshida et al. Nat Comm, 2020). Here, they successfully exploit Ndc80 phospho-mutants to compare MTOC distribution in oocytes with reduced or increased end-on-attachment. The data show that stable end-on attachment determines stable MTOC clustering at spindle poles and governs the maintenance of bipolarity and spindle length.

    Thank you for your clear description of our study.

    Reviewer #3 (Evidence, reproducibility and clarity (Required)):

    In order to assemble a bipolar structure, acentrosomal spindles relay on multiple non-centrosomal pathways. Mouse oocytes specifically build bipolar spindles by sorting and clustering of microtubule organizing centers (MTOCs). While microtubule cross-linkers, spindle motors and microtubule nucleators are involved; the role of kinetochores and kinetochore-microtubule attachments in meiotic spindle assembly and maintenance has not been thoroughly tested. Using an impressive combination of live cell imaging and semi-automated image analysis, Courtois et al. quantified MTOC behavior in bipolar mouse oocyte spindles and found an ongoing MTOC sorting in metaphase and instances of MTOC-kinetochore associations. The authors further employed an elegant genetic system to replace NDC80 in maturing oocytes with a mutant almost completely unable to form stable microtubule-kinetochore attachments. The data show lack of MTOC confinement at the spindle poles and increased spindle elongation while maintaining spindle bipolarity. The authors concluded that stable kinetochore-microtubule attachments are required to confine MTOCs at the poles, which in turn sets an optimal spindle length. Overall, the data are of very high quality and clearly presented, the manuscript is easy to follow, and the methods are comprehensively described. One concern is the lack of mechanistic link between the natural metaphase MTOC sorting (Fig. 1-2) and massive MTOC rearrangements observed with the NDC80-9D mutant (Fig. 3). A second concern is that deficient MTOC confinements and spindle elongation observed with the 9D mutant could be due unaligned chromosomes rather than lack of stable kinetochore-microtubule attachments, which is the authors' interpretation.

    **Major Points:**

    1. Massive MTOC rearrangements (Supplementary Video 6) are reminiscent of spindle assembly defects or spindle collapse. Since these spindles do not reach a normal metaphase and seem to change shape (Supplementary Video 6; 11:10), it is difficult to differentiate between spindle assembly and spindle maintenance defects. Is there a difference in the timing of bipolar spindle assembly for NDC80-9D vs WT? If so, one interpretation is that stable attachments not only ensure MTOC confinement but also contribute to bipolar spindle assembly.

    We apologize for the lack of explanation for the spindle dynamics seen in Supplementary Video 6, 11:10. At this time point, the spindle rotated in 3D, which appeared as if the spindle collapsed in the z-projection movie. We will add this explanation into the legend.

    Our quantitative analysis of spindle shape in 3D indicated no increased collapse in Ndc80-9D, based on the signals of the spindle marker EGFP-Map4. Moreover, we observed no detectable difference in the timing of the onset of bipolar spindle assembly, as long as we define it with EGFP-Map4 signals. These results are shown in Figure 4B.

    1. Fig. 1-2 vs Fig. 3 - It is not clear how the discrete MTOC sorting phenotype presented in Fig. 1-2 relates to the massive MTOC collapse shown in Fig. 3. The natural MTOC sorting and MTOC-kinetochore associations seem to be happening within the bipolar structure confined by the polar MTOCs. The MTOC rearrangements (e.g., Supplementary Video 6) are much more drastic, reminiscent of a spindle collapse. To make a mechanistic link between the phenotypes, it would be useful to use an intermediate NCD80 mutant (ex. NDC80-4D; Zaytsev et al., 2014 JCB) that may support chromosome alignment and maintenance of the canonical bipolar spindle structure, but still show effects on MTOC sorting.

    Thank you for your nice suggestion. We will test Ndc80-4D. The construct is ready.

    1. Fig. 4 - The authors should provide evidence that unstable kinetochore-microtubule attachments, rather than chromosome-derived signals of misaligned chromosomes (e.g., from Ran or Aurora B), limit spindle elongation. For example, the authors could measure spindle elongation in oocytes with misaligned chromosomes but stable attachments: for example, NDC80-9A oocytes released from an Eg5 inhibition block should carry a number of polar chromosomes with stable attachments. The expectation would be that such spindles form with confined MTOCs and do not elongate as much as NDC80-9D expressing oocytes.

    Thank you for this important suggestion. Following your suggestion, we have conducted a pilot experiment using monastrol washout. However, unfortunately, we did not observe increased chromosome misalignment in Ndc80-9A. We will play around experimental conditions.

    Moreover, we propose to perform an additional experiment. We will use cohesin depletion with Rec8 TRIM-Away, which will produce chromosome misalignment and reduce kinetochore-microtubule attachment stability. We expect that these oocytes exhibit excessive spindle elongation. Then, we ask if Ndc80-9A, which would force to stabilize kinetochore-microtubule attachment (but fail to align chromosomes due to loss of chromosome cohesion), can suppress excessive spindle elongation.

    These experiments will allow us to address direct contribution of kinetochore-microtubule attachment to proper spindle elongation. However, in our opinion, regardless of the results, we cannot exclude the possibility that chromosome alignment contributes to proper spindle elongation, which is indeed an intriguing hypothesis. We will discuss these possibilities in Discussion.

    1. Figure 5D - The authors' model suggests that MTOCs are confined due to their connection to stably attached k-fibers. It would be useful to speculate on the molecular mechanism behind the confinement. Does a maximal k-fiber length restrict the elongation, or is there a pulling force exerted by the kinetochores?

    Thank you for your thoughtful suggestion. As the reviewer suggests, we speculate that the length of k-fibers is critical for restricting MTOC position and spindle elongation. K-fibers may prevent excessive spindle elongation by anchoring MTOCs at their minus ends. Alternatively, k-fibers may act as a platform that inactivates spindle bipolarizers. We will discuss these possibilities in our revised manuscript.

    1. Discussion - Lines 203-204 - "The findings of this study, together with recent studies, suggest a model for how kinetochore-microtubule attachments contribute to acentrosomal spindle assembly (Figure 5D)". - Throughout the paper the authors underscore that biopolar spindles do assembly with the NDC80-9D mutant. The authors should clarify whether spindle assembly is affected by the NDC80-9D mutant or not?

    Thank you for your comment. We agree with the reviewer that we should clearly state our conclusion based on the phenotype of the Ndc80-9D mutant. Our conclusion is that stable kinetochore-microtubule attachment fine-tunes bipolar spindle assembly. If oocytes lack stable attachments, they can form a bipolar-shaped spindle composed of microtubule arrays that are largely bipolar, but the spindle becomes too much elongated and lacks MTOCs at its poles. We will explicitly state these ideas in our revised manuscript.

    **Minor Points:**

    1. Introduction - Lines 38-44 - The authors should cite the role of the Augmin complex in acentrosomal spindle assembly (Watanabe et al., 2016 Cell Reports).

    Thank you for your excellent suggestion. We will cite this relevant paper.

    1. Results - Lines 55-56 - "However, the precise manipulation of the stability of kinetochore-microtubule attachments has not been tested" - Gui et Homer 2013 studied the outcome of NDC80 depletion and tested the NDC80-9A mutant in the context of oocyte spindle assembly. Although, as the authors point out in the Discussion section, there might be differences in the experimental design that lead to different conclusions, it is not entirely accurate that precise manipulations of attachments stability have not been tested. A different wording (e.g., "has not been comprehensively tested") may be better.

    Thank you for your suggestion. We agree that “has not been comprehensively tested” fits better.

    1. Results - Lines 162-164 - "Ndc80-9D-expressing oocytes had no significant delay in the onset of spindle elongation, but had significantly faster kinetics of elongation compared to Ndc80-WT- and Ndc80-9D-expressing oocytes" - The authors probably meant "... Ndc80-9A expressing oocytes."

    Thank you for pointing out this mistake. We will correct it.

    1. Discussion - Lines 239-242 - "... microtubule nucleation in later stages may not be determined by MTOCs but are largely attributed to nucleation within the spindle, as observed by microtubule plus-end tracking in bipolar-shaped spindles (Supplementary Figure 4)." - Strictly speaking, EB3 comets indicate microtubule polymerization rather than nucleation. Microtubule nucleation within the spindle is, however, supported by studies of the Augmin complex (e.g., Watanabe et al., 2016 Cell Rep).

    Thank you for your comment. We will correct our wording for EB3 comets and discuss that microtubule nucleation within the spindle is shown in Watanabe et al., 2016 Cell Rep.

    1. Discussion - Lines 257-260 - "The lagging MTOCs can be positioned close to kinetochores on bi-oriented chromosomes, underscoring the importance of active error corrections of kinetochore-microtubule attachments during metaphase (Lane and Jones, 2014; Yoshida et al., 2015)." - The reasoning here is not clear. Does the number/persistence of lagging MTOCs correlate with chromosome mis-alignment or with the efficiency/timing of chromosome alignment in WT cells?

    We apologize that our discussion was not clear. Previous studies (Lane and Jones, 2014; Yoshida et al., 2015) show that kinetochore-microtubule attachment errors are found on aligned chromosomes during metaphase and must be corrected until anaphase onset in oocytes. We speculate that lagging (or central) MTOCs may be a source of such kinetochore-microtubule attachment errors, although we cannot directly test this hypothesis due to lack of tools to specifically manipulate MTOC positions. We will discuss these points in Discussion.

    To check if central MTOCs are correlated with chromosome misalignment, we will perform the tracking of chromosomes that were closely positioned to lagging MTOCs.

    1. Discussion - Line 266 - "Yoshida et al., 2020" - This article is cited elsewhere in the text as "Yoshida et al., in press".

    Thank you for pointing out these mistakes. We will correct them.

    Reviewer #3 (Significance (Required)):

    Courtois et al., have found a new mechanism contributing to acentrosomal spindle assembly in mouse oocytes. Although kinetochore-dependent spindle assembly occurs in mitotic cells (e.g., Toso et al., 2009 JCB), only the recent work from the Kitajima lab (Yoshida et al., 2020 Nat Comm; this manuscript) showed that kinetochores also impact acentrosomal spindle assembly in meiosis. The genetic model presented here brings a significant technical advance in dissecting relative contributions of spindle assembly pathways in mouse oocytes (ex. Schuh and Ellenberg 2007 Cell; Watanabe et al., 2016 Cell Rep; Drutovic et al., 2020 EMBO J) and complements current methods used to study meiotic error-correction (e.g., Chmatal et al., 2015 Curr Biol, Yoshida et al., 2015 Dev Cell; Vallot et al., 2018 Curr Biol and many others). This model expands an existing toolbox of techniques allowing complete elimination of the endogenous protein specifically in mature mouse oocytes (Clift et al., 2017 Cell; Clift et al., 2018 Nat Protocols), which is a difficult feat due to a limited capacity of ex-vivo culture (Pfender et al., 2015 Nature). Therefore, the work presented in this manuscript may encourage other researchers to establish similar systems for oocyte-specific manipulations, which will allow more precise insight into oocyte biology.

    Expertise keywords: spindle dynamics, chromosome segregation, mitosis, meiosis

    We appreciate your comments. Additional experiments following on your constructive comments will further improve our manuscript.

  2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #3

    Evidence, reproducibility and clarity

    In order to assemble a bipolar structure, acentrosomal spindles relay on multiple non-centrosomal pathways. Mouse oocytes specifically build bipolar spindles by sorting and clustering of microtubule organizing centers (MTOCs). While microtubule cross-linkers, spindle motors and microtubule nucleators are involved; the role of kinetochores and kinetochore-microtubule attachments in meiotic spindle assembly and maintenance has not been thoroughly tested. Using an impressive combination of live cell imaging and semi-automated image analysis, Courtois et al. quantified MTOC behavior in bipolar mouse oocyte spindles and found an ongoing MTOC sorting in metaphase and instances of MTOC-kinetochore associations. The authors further employed an elegant genetic system to replace NDC80 in maturing oocytes with a mutant almost completely unable to form stable microtubule-kinetochore attachments. The data show lack of MTOC confinement at the spindle poles and increased spindle elongation while maintaining spindle bipolarity. The authors concluded that stable kinetochore-microtubule attachments are required to confine MTOCs at the poles, which in turn sets an optimal spindle length. Overall, the data are of very high quality and clearly presented, the manuscript is easy to follow, and the methods are comprehensively described. One concern is the lack of mechanistic link between the natural metaphase MTOC sorting (Fig. 1-2) and massive MTOC rearrangements observed with the NDC80-9D mutant (Fig. 3). A second concern is that deficient MTOC confinements and spindle elongation observed with the 9D mutant could be due unaligned chromosomes rather than lack of stable kinetochore-microtubule attachments, which is the authors' interpretation.

    Major Points:

    1. Massive MTOC rearrangements (Supplementary Video 6) are reminiscent of spindle assembly defects or spindle collapse. Since these spindles do not reach a normal metaphase and seem to change shape (Supplementary Video 6; 11:10), it is difficult to differentiate between spindle assembly and spindle maintenance defects. Is there a difference in the timing of bipolar spindle assembly for NDC80-9D vs WT? If so, one interpretation is that stable attachments not only ensure MTOC confinement but also contribute to bipolar spindle assembly.

    2. Fig. 1-2 vs Fig. 3 - It is not clear how the discrete MTOC sorting phenotype presented in Fig. 1-2 relates to the massive MTOC collapse shown in Fig. 3. The natural MTOC sorting and MTOC-kinetochore associations seem to be happening within the bipolar structure confined by the polar MTOCs. The MTOC rearrangements (e.g., Supplementary Video 6) are much more drastic, reminiscent of a spindle collapse. To make a mechanistic link between the phenotypes, it would be useful to use an intermediate NCD80 mutant (ex. NDC80-4D; Zaytsev et al., 2014 JCB) that may support chromosome alignment and maintenance of the canonical bipolar spindle structure, but still show effects on MTOC sorting.

    3. Fig. 4 - The authors should provide evidence that unstable kinetochore-microtubule attachments, rather than chromosome-derived signals of misaligned chromosomes (e.g., from Ran or Aurora B), limit spindle elongation. For example, the authors could measure spindle elongation in oocytes with misaligned chromosomes but stable attachments: for example, NDC80-9A oocytes released from an Eg5 inhibition block should carry a number of polar chromosomes with stable attachments. The expectation would be that such spindles form with confined MTOCs and do not elongate as much as NDC80-9D expressing oocytes.

    4. Figure 5D - The authors' model suggests that MTOCs are confined due to their connection to stably attached k-fibers. It would be useful to speculate on the molecular mechanism behind the confinement. Does a maximal k-fiber length restrict the elongation, or is there a pulling force exerted by the kinetochores?

    5. Discussion - Lines 203-204 - "The findings of this study, together with recent studies, suggest a model for how kinetochore-microtubule attachments contribute to acentrosomal spindle assembly (Figure 5D)". - Throughout the paper the authors underscore that biopolar spindles do assembly with the NDC80-9D mutant. The authors should clarify whether spindle assembly is affected by the NDC80-9D mutant or not?

    Minor Points:

    1. Introduction - Lines 38-44 - The authors should cite the role of the Augmin complex in acentrosomal spindle assembly (Watanabe et al., 2016 Cell Reports).

    2. Results - Lines 55-56 - "However, the precise manipulation of the stability of kinetochore-microtubule attachments has not been tested" - Gui et Homer 2013 studied the outcome of NDC80 depletion and tested the NDC80-9A mutant in the context of oocyte spindle assembly. Although, as the authors point out in the Discussion section, there might be differences in the experimental design that lead to different conclusions, it is not entirely accurate that precise manipulations of attachments stability have not been tested. A different wording (e.g., "has not been comprehensively tested") may be better.

    3. Results - Lines 162-164 - "Ndc80-9D-expressing oocytes had no significant delay in the onset of spindle elongation, but had significantly faster kinetics of elongation compared to Ndc80-WT- and Ndc80-9D-expressing oocytes" - The authors probably meant "... Ndc80-9A expressing oocytes."

    4. Discussion - Lines 239-242 - "... microtubule nucleation in later stages may not be determined by MTOCs but are largely attributed to nucleation within the spindle, as observed by microtubule plus-end tracking in bipolar-shaped spindles (Supplementary Figure 4)." - Strictly speaking, EB3 comets indicate microtubule polymerization rather than nucleation. Microtubule nucleation within the spindle is, however, supported by studies of the Augmin complex (e.g., Watanabe et al., 2016 Cell Rep).

    5. Discussion - Lines 257-260 - "The lagging MTOCs can be positioned close to kinetochores on bi-oriented chromosomes, underscoring the importance of active error corrections of kinetochore-microtubule attachments during metaphase (Lane and Jones, 2014; Yoshida et al., 2015)." - The reasoning here is not clear. Does the number/persistence of lagging MTOCs correlate with chromosome mis-alignment or with the efficiency/timing of chromosome alignment in WT cells?

    6. Discussion - Line 266 - "Yoshida et al., 2020" - This article is cited elsewhere in the text as "Yoshida et al., in press".

    Significance

    Courtois et al., have found a new mechanism contributing to acentrosomal spindle assembly in mouse oocytes. Although kinetochore-dependent spindle assembly occurs in mitotic cells (e.g., Toso et al., 2009 JCB), only the recent work from the Kitajima lab (Yoshida et al., 2020 Nat Comm; this manuscript) showed that kinetochores also impact acentrosomal spindle assembly in meiosis. The genetic model presented here brings a significant technical advance in dissecting relative contributions of spindle assembly pathways in mouse oocytes (ex. Schuh and Ellenberg 2007 Cell; Watanabe et al., 2016 Cell Rep; Drutovic et al., 2020 EMBO J) and complements current methods used to study meiotic error-correction (e.g., Chmatal et al., 2015 Curr Biol, Yoshida et al., 2015 Dev Cell; Vallot et al., 2018 Curr Biol and many others). This model expands an existing toolbox of techniques allowing complete elimination of the endogenous protein specifically in mature mouse oocytes (Clift et al., 2017 Cell; Clift et al., 2018 Nat Protocols), which is a difficult feat due to a limited capacity of ex-vivo culture (Pfender et al., 2015 Nature). Therefore, the work presented in this manuscript may encourage other researchers to establish similar systems for oocyte-specific manipulations, which will allow more precise insight into oocyte biology.

    Expertise keywords: spindle dynamics, chromosome segregation, mitosis, meiosis

  3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #2

    Evidence, reproducibility and clarity

    I am commenting on the work of Courtois et al. as an expert in the biochemistry of spindle formation with a focus on acentriolar assembly.

    First and foremost, this a technically excellent study with a number of very interesting and well-documented observations, which are highly relevant for our understanding of the mechanisms of acentriolar spindle formation in the mouse oocyte model. In principle, the manuscript is in a very mature state. However, my major concern at this point would be that there is a break in the story. It starts describing the (very interesting) observation of "central MTOCs". After thoroughly investigating how these behave, the authors stop and look at overall MTOCs distribution after loss of stable MT-kinetochore interactions based on oocytes expressing the Ndc80_9D mutant instead of wt Ndc80. The two parts are experimentally and conceptually not well connected.

    Answering the following questions may help to further develop the paper:

    1. If I understand the arguments correctly, central MTOCs are an "accident" on the way to complete meiosis I spindle formation, which will eventually be corrected and all MTOCs clustered at the poles. Thus, they may serve as an assay for spindle assembly fidelity and kinetics (?). At this point, the reader is left with the observation without efforts to explain the meaning of this observation, ideally experimentally, or at least in a valid discussion.
    2. Enthusiasm for the technically excellent experiments using the Ndc80 variants are somewhat reduced as conclusions from these experiments are published in the parallel paper of the same laboratory (Yoshida et al.). Due to my opinion, it may thus be even more important to connect these observations with the first part described central MTOCs and to clarify their significance.
    3. Shown if in Fig. 3B but not fully explained: How does the distribution of what is defined as central MTOCs behave in Ndc80_wt and Ndc80_9A mutant oocytes? Do the variants differ, i.e. are there fewer, or less persistent central MTOCs in the 9A mutant? Would they differ in kinetics of appearance and "rescue" to the poles?
    4. Similarly: is there a correlation of central MTOC appearance, Ndc80 phosphorylation/stability of kinetochore attachment and Anaphase I onset? The authors mention that oocytes expressing the 9A mutant go faster into Anaphase.
    5. The observation that "central MTOCs exhibited correlated motions with closely positioned kinetochores" is poorly defined, yet an important observation. Does this mean some sort of short k-fibers remain to connect central MTOCs and kinetochores? Wouldn't one expect that the loss of stable end-on-attachment causes MTOCs to become central? How does this fit into a/the model?
    6. Along the same lines: The authors hype their conclusion that kinetochores dominate meiosis I spindle formation based on the observation that loss of kinetochore functions results in less well-organized spindle poles and worse MTOC "confinement". This may mean that kinetochores, together with MTOCs, maintain stable k-fibers in meiosis, as shown here and in Yoshida et al. When one or the other end of k-fibers is destabilized (loss of end-on-attachment, loss of MTOC attachment), the fibers collapse and the remaining minus-or-plus-end associated structure loses its destination. We then see central MTOCs and/or kinetochores at poles. In this respect, the interpretation / discussion should be less "kinetochore-centered".
    7. Is there any way to determine the efficiency of Ndc80 knockdown in the gene replacement respective experiment? I share the view of the authors that their method may be more efficient and may explain apparent discrepancies to previous studies on Ndc80-9A (Guy and Homer, 2013) with more dramatic effects on spindle geometry. However, at that point, this remains speculative. For instance, one may also speculate vice versa that the ko strategy used here is less efficient in a maternally dominated system and leaves behind more wt Ndc80, which better compensates defects seen in the 9A mutant.

    Significance

    Courtois et al present data on mechanisms governing spindle assembly in mouse oocytes. Mouse oocytes serve as model system for spindle formation in the absence of centriole-based MTOCs. At the onset of meiosis I, numerous MTOCs form, which shape a mass ("ball") of MT nucleated around chromatin into a bipolar structure. Accumulating evidence indicates that kinetochores play an important role in acentriolar spindle formation in mouse oocytes, yet the mechanisms behind kinetochore action remains unclear.

    Here, Courtois et al. analyze spindle formation in live mouse oocytes using 3D-time-lapse imaging. They use fluorescently tagged Cep192 to track MTOCs and Histone H2B or CENP-C to visualize chromatin or kinetochores. In the first part, the authors deal with the appearance of "central MTOCs", i.e. aggregates of centrosomal protein(s) that, apparently, fail to remain stably integrated into the spindle pole clusters on MTOCs during spindle formation. The authors convincingly demonstrate that these central MTOCs can be seen in the majority of spindles investigated. They demonstrate that central MTOCs generally come from positions at poles from where they "fall back" towards chromosomes. Central MTOCs may even cross the spindle and end up at opposite poles from where they originated from. Interestingly, central MTOCs are often found next to kinetochores.

    In the second part, the authors focus on the role of kinetochores and their stable MT attachment for spindle formation in general and bipolarity/pole organization in particular. The same lab has published data on the role of kinetochores in meiosis I spindle very recently (Yoshida et al. Nat Comm, 2020). Here, they successfully exploit Ndc80 phospho-mutants to compare MTOC distribution in oocytes with reduced or increased end-on-attachment. The data show that stable end-on attachment determines stable MTOC clustering at spindle poles and governs the maintenance of bipolarity and spindle length.

  4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #1

    Evidence, reproducibility and clarity

    This group has been at the forefront recently of using imaging technologies to understand how chromosome segregation is coordinated in mammalian oocytes, and why errors occur. In the current paper they examine the dynamics of microtubule organising centres (which effectively replace centrioles/centrosomes in oocytes) in MI. The imaging of oocytes in this paper is beautiful. The major findings are (1) that MTOCs that are supposed to be at the spindle pole sometimes end up at the spindle equator, and this is documented very beautifully and (2) the correct positioning of MTOCs at the spindle pole appears to require kinetochore microtubules, as indicated by experiments manipulating the kinetochore component NDC80.

    Major Comments

    As such the major claims of the paper are basically well supported. However, the analyses are is almost entirely restricted to prometaphase/metaphase, and the conclusions are relatively limited. The salient omission is any analysis of MTOC/chromosome relationship during anaphase. Were the paper to be extended to determine whether the lingering of MTOCs at the spindle equator is related to chromosome segregation error, that would increase the reach and importance of the work substantially. Specifically:

    1. Can tracking experiments be performed to determine whether the chromosome that shows movement similarities to the errant MTOC is more/less likely to missegregate? Complete tracking as these authors are expert at should achieve this, or photo-labelling the desired chromosome.
    2. Can the position of MTOCs (proportion that linger at the equator) be manipulated in the absence of other defects to determine whether this increases errors (lagging at anaphase, metaphase-II chromosome counting spreads)?
    3. The above analysis would have to be well supported by controls showing that these constructs are having no impact on normal anaphase (proportion of oocytes completing meiosis-I, likelihood of lagging chromosomes etc).
    4. Related to the above, though I appreciate a fixed metaphase image of MTOC immunofluorescence is presented, the paper is about the dynamics of MTOCs and thus nonetheless relies heavily on the live imaging of cep192. The core results should be confirmed using another (substantially different) MTOC probe. This final comment applies to the current metaphase data, regardless of whether the study is ultimately extended

    Significance

    As explained above, as presented this paper is largely scientifically sound, but far more limited in scope than this groups other recent papers. As explained above, the paper would be made more impactful and the readership broadened if a relationship between MTOC position/movement and segregation problems were established. Or on the other hand if it were established why some MTOCs sometimes linger at the spindle equator. Whilst to my knowledge this is the first time that equator MTOCs have been documented so carefully, oocyte cell biologists may not find the core observation that MTOCs are occasionally at the spindle equator extremely surprising.