Identification and Analysis of Shared Risk Factors in Sepsis and High Mortality Risk COVID-19 Patients

This article has been Reviewed by the following groups

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

BACKGROUND

Coronavirus disease 2019 (COVID-19) is a novel coronavirus strain disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease is highly transmissible and severe disease including viral sepsis has been reported in up to 16% of hospitalized cases. The admission characteristics associated with increased odds of hospital mortality among confirmed cases of COVID-19 include severe hypoxia, low platelet count, elevated bilirubin, hypoalbuminemia and reduced glomerular filtration rate. These symptoms correlate highly with severe sepsis cases. The diseases also share similar comorbidity risks including dementia, type 2 diabetes mellitus, coronary heart disease, hypertension and chronic renal failure. Sepsis has been observed in up to 59% of hospitalized COVID-19 patients.

It is highly desirable to identify risk factors and novel therapy/drug repurposing avenues for late-stage severe COVID-19 patients. This would enable better protection of at-risk populations and clinical stratification of COVID-19 patients according to their risk for developing life threatening disease.

METHODS

As there is currently insufficient data available for confirmed COVID-19 patients correlating their genomic profile, disease severity and outcome, co-morbidities and treatments as well as epidemiological risk factors (such as ethnicity, blood group, smoking, BMI etc.), a direct study of the impact of host genomics on disease severity and outcomes is not yet possible. We therefore ran a study on the UK Biobank sepsis cohort as a surrogate to identify sepsis associated signatures and genes, and correlated these with COVID-19 patients.

Sepsis is itself a life-threatening inflammatory health condition with a mortality rate of approximately 20%. Like the initial studies for COVID-19 patients, standard genome wide association studies (GWAS) have previously failed to identify more than a handful of genetic variants that predispose individuals to developing sepsis.

RESULTS

We used a combinatorial association approach to analyze a sepsis population derived from UK Biobank. We identified 70 sepsis risk-associated genes, which provide insights into the disease mechanisms underlying sepsis pathogenesis. Many of these targets can be grouped by common mechanisms of action such as endothelial cell dysfunction, PI3K/mTOR pathway signaling, immune response regulation, aberrant GABA and neurogenic signaling.

CONCLUSION

This study has identified 70 sepsis related genes, many of them for the first time, that can reasonably be considered to be potentially relevant to severe COVID-19 patients. We have further identified 59 drug repurposing candidates for 13 of these targets that can be used for the development of novel therapeutic strategies to increase the survival rate of patients who develop sepsis and potentially severe COVID-19.

Article activity feed

  1. SciScore for 10.1101/2020.05.05.20091918: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variableWe analyzed a dataset using sepsis patients found in the UK Biobank14, containing sepsis patients (n=6,843, 3,700 males and 3,143 females) and age and co-morbidity matched controls (n=6,820, 4,295 males and 2,525 females).

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.