Importance of Interaction Structure and Stochasticity for Epidemic Spreading: A COVID-19 Case Study

This article has been Reviewed by the following groups

Read the full article

Abstract

In the recent COVID-19 pandemic, computer simulations are used to predict the evolution of the virus propagation and to evaluate the prospective effectiveness of non-pharmaceutical interventions. As such, the corresponding mathematical models and their simulations are central tools to guide political decision-making. Typically, ODE-based models are considered, in which fractions of infected and healthy individuals change deterministically and continuously over time.

In this work, we translate an ODE-based COVID-19 spreading model from literature to a stochastic multi-agent system and use a contact network to mimic complex interaction structures. We observe a large dependency of the epidemic’s dynamics on the structure of the underlying contact graph, which is not adequately captured by existing ODE-models. For instance, existence of super-spreaders leads to a higher infection peak but a lower death toll compared to interaction structures without super-spreaders. Overall, we observe that the interaction structure has a crucial impact on the spreading dynamics, which exceeds the effects of other parameters such as the basic reproduction number R 0 .

We conclude that deterministic models fitted to COVID-19 outbreak data have limited predictive power or may even lead to wrong conclusions while stochastic models taking interaction structure into account offer different and probably more realistic epidemiological insights.

Article activity feed

  1. SciScore for 10.1101/2020.05.05.20091736: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.