Acceptability of App-Based Contact Tracing for COVID-19: Cross-Country Survey Study

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The COVID-19 pandemic is the greatest public health crisis of the last 100 years. Countries have responded with various levels of lockdown to save lives and stop health systems from being overwhelmed. At the same time, lockdowns entail large socioeconomic costs. One exit strategy under consideration is a mobile phone app that traces the close contacts of those infected with COVID-19. Recent research has demonstrated the theoretical effectiveness of this solution in different disease settings. However, concerns have been raised about such apps because of the potential privacy implications. This could limit the acceptability of app-based contact tracing in the general population. As the effectiveness of this approach increases strongly with app uptake, it is crucial to understand public support for this intervention.

Objective

The objective of this study is to investigate the user acceptability of a contact-tracing app in five countries hit by the pandemic.

Methods

We conducted a largescale, multicountry study (N=5995) to measure public support for the digital contact tracing of COVID-19 infections. We ran anonymous online surveys in France, Germany, Italy, the United Kingdom, and the United States. We measured intentions to use a contact-tracing app across different installation regimes (voluntary installation vs automatic installation by mobile phone providers) and studied how these intentions vary across individuals and countries.

Results

We found strong support for the app under both regimes, in all countries, across all subgroups of the population, and irrespective of regional-level COVID-19 mortality rates. We investigated the main factors that may hinder or facilitate uptake and found that concerns about cybersecurity and privacy, together with a lack of trust in the government, are the main barriers to adoption.

Conclusions

Epidemiological evidence shows that app-based contact tracing can suppress the spread of COVID-19 if a high enough proportion of the population uses the app and that it can still reduce the number of infections if uptake is moderate. Our findings show that the willingness to install the app is very high. The available evidence suggests that app-based contact tracing may be a viable approach to control the diffusion of COVID-19.

Article activity feed

  1. SciScore for 10.1101/2020.05.05.20091587: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board StatementConsent: At the beginning, after collecting respondents’ informed consent, we described the app, explaining how it would function as well as its purpose.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Limitations: Our study has some limitations that we tried to address in different ways. First, respondents recruited online may not be representative of the entire population. In particular, digital literacy and willingness to share data could be higher among such respondents. To ensure that our results do not hinge on our specific sample, we replicated an abridged version of the German survey with a different panel provider that randomly recruits its participants offline. Our results remain almost completely unchanged (see Section B.3 in Multimedia Appendix). Second, our survey asked hypothetical questions about future behavior. However, high levels of intended installations may not directly translate into actual installations. Nevertheless, studies often find good correlation between what people declare they would do in surveys and actual behavior[18–22], even in relation to app installations[23–26]. More generally, broad support for the approach is a necessary first stage to adoption, and our findings about heterogeneity in support point towards specific subgroups of the population that may need stronger encouragements to adoption. We show in Section C.4 of the Multimedia Appendix that respondents who would install the app mention far more reasons for its adoption than those who would not install it (but a similar number of reasons against). We show in Section C.9 that respondents in our replication study who did not answer the comprehension questions correctly were less w...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.