Repurposing low–molecular-weight drugs against the main protease of severe acute respiratory syndrome coronavirus 2
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
The coronavirus disease (COVID-19) pandemic caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected the global healthcare system. Drug repurposing is a feasible method for emergency treatment. As low–molecular-weight drugs have high potential to completely match interactions with essential SARS-CoV-2 targets, we propose a strategy to identify such drugs using the fragment-based approach. Herein, using ligand- and protein-observed fragment screening approaches, we identified niacin and hit 1 binding to the catalytic pocket of the main protease of the SARS-CoV-2 (M pro ), thereby modestly inhibiting the enzymatic activity of M pro . Chemical shift perturbations induced by niacin and hit 1 indicate a partial overlap of their binding sites, i.e., the catalytic pocket of M pro may accommodate derivatives with large molecular sizes. Therefore, we searched for drugs containing niacin or hit 1 pharmacophores and identified carmofur, bendamustine, triclabendazole, and emedastine; these drugs are highly capable of inhibiting protease activity. Our study demonstrates that the fragment-based approach is a feasible strategy for identifying low–molecular-weight drugs against the SARS-CoV-2 and other potential targets lacking specific drugs.
Article activity feed
-
SciScore for 10.1101/2020.05.05.079848: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2020.05.05.079848: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
