CoV-Seq: SARS-CoV-2 Genome Analysis and Visualization

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Summary

COVID-19 has become a global pandemic not long after its inception in late 2019. SARS-CoV-2 genomes are being sequenced and shared on public repositories at a fast pace. To keep up with these updates, scientists need to frequently refresh and reclean datasets, which is ad hoc and labor-intensive. Further, scientists with limited bioinformatics or programming knowledge may find it difficult to analyze SARS-CoV-2 genomes. In order to address these challenges, we developed CoV-Seq, a webserver to enable simple and rapid analysis of SARS-CoV-2 genomes. Given a new sequence, CoV-Seq automatically predicts gene boundaries and identifies genetic variants, which are presented in an interactive genome visualizer and are downloadable for further analysis. A command-line interface is also available for high-throughput processing.

Availability and Implementation

CoV-Seq is implemented in Python and Javascript. The webserver is available at http://covseq.baidu.com/ and the source code is available from https://github.com/boxiangliu/covseq .

Contact

jollier.liu@gmail.com

Supplementary information

Supplementary information are available at bioRxiv online.

Article activity feed

  1. SciScore for 10.1101/2020.05.01.071050: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.