CoV-Seq: SARS-CoV-2 Genome Analysis and Visualization
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
Summary
COVID-19 has become a global pandemic not long after its inception in late 2019. SARS-CoV-2 genomes are being sequenced and shared on public repositories at a fast pace. To keep up with these updates, scientists need to frequently refresh and reclean datasets, which is ad hoc and labor-intensive. Further, scientists with limited bioinformatics or programming knowledge may find it difficult to analyze SARS-CoV-2 genomes. In order to address these challenges, we developed CoV-Seq, a webserver to enable simple and rapid analysis of SARS-CoV-2 genomes. Given a new sequence, CoV-Seq automatically predicts gene boundaries and identifies genetic variants, which are presented in an interactive genome visualizer and are downloadable for further analysis. A command-line interface is also available for high-throughput processing.
Availability and Implementation
CoV-Seq is implemented in Python and Javascript. The webserver is available at http://covseq.baidu.com/ and the source code is available from https://github.com/boxiangliu/covseq .
Contact
jollier.liu@gmail.com
Supplementary information
Supplementary information are available at bioRxiv online.
Article activity feed
-
SciScore for 10.1101/2020.05.01.071050: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Than…
SciScore for 10.1101/2020.05.01.071050: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: Thank you for sharing your code.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- No funding statement was detected.
- No protocol registration statement was detected.
-
