Associations between psychiatric disorders, COVID-19 testing probability and COVID-19 testing results: findings from a population-based study

This article has been Reviewed by the following groups

Read the full article

Abstract

Many psychiatrists are worried their patients, at increased risk for COVID-19 complications, are precluded from receiving appropriate testing. There is a lack of epidemiological data on the associations between psychiatric disorders and COVID-19 testing rates and testing outcomes.

Aims

To compare COVID-19 testing probability and results among individuals with psychiatric disorders with those without such diagnoses, and to examine the associations between testing probability and results and psychiatric diagnoses.

Method

This is a population-based study to perform association analyses of psychiatric disorder diagnoses with COVID-19 testing probability and such test results, by using two-sided Fisher exact tests and logistic regression. The population were UK Biobank participants who had undergone COVID-19 testing. The main outcomes were COVID-19 testing probability and COVID-19 test results.

Results

Individuals with psychiatric disorders were overrepresented among the 1474 UK Biobank participants with test data: 23% of the COVID-19 test sample had a psychiatric diagnosis compared with 10% in the full cohort ( P < 0.0001). This overrepresentation persisted for each of the specific psychiatric disorders tested. Furthermore, individuals with a psychiatric disorder ( P = 0.01), particularly substance use disorder ( P < 0.005), had negative test results significantly more often than individuals without psychiatric disorders. Sensitivity analyses confirmed our results.

Conclusions

In contrast with our hypotheses, UK Biobank participants with psychiatric disorders have been tested for COVID-19 more frequently than individuals without a psychiatric history. Among those tested, test outcomes were more frequently negative for registry participants with psychiatric disorders than in others, countering arguments that people with psychiatric disorders are particularly prone to contract the virus.

Article activity feed

  1. SciScore for 10.1101/2020.04.30.20083881: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Limitations of this study include the relatively small sample size, the fact that the UKB is not fully representative of the general population,32–34 and absence of replication in other cohorts. The small sample size precluded individuals with diagnosis of severe psychiatric disorders, like schizophrenia, schizoaffective disorder, or bipolar disorders, to be represented in the analyses. Furthermore, assessment centre was used as a proxy for geographical location, and this variable was set at the start of recruitment, e.g. if individuals moved after the initial assessment, this was not possible to take into consideration. Yet, two preliminary conclusions can be drawn based on the current dataset given the convergence of findings for a range of psychiatric disorders and similarities between testing probabilities. First, individuals with a psychiatric disorder are not less likely to undergo testing for COVID-19 than those without psychiatric disorders. Second, patients with psychiatric disorders do not test positive more frequently than people undergoing testing without such conditions. We encourage other researchers to perform similar analyses in other cohorts, as well as further research when more data from the UK Biobank become available, e.g. into associations between extended psychiatric symptom-level data, COVID-19 symptom severity and mortality.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.