Modeling COVID-19 on a network: super-spreaders, testing and containment

This article has been Reviewed by the following groups

Read the full article

Abstract

To model COVID-19 spread, we use an SEIR agent-based model on a graph, which takes into account several important real-life attributes of COVID-19: super-spreaders, realistic epidemiological parameters of the disease, testing and quarantine policies. We find that mass-testing is much less effective than testing the symptomatic and contact tracing, and some blend of these with social distancing is required to achieve suppression. We also find that the fat tail of the degree distribution matters a lot for epidemic growth, and many standard models do not account for this. Additionally, the average reproduction number for individuals, equivalent in many models to R 0 , is not an upper bound for the effective reproduction number, R . Even with an expectation of less than one new case per person, our model shows that exponential spread is possible. The parameter which closely predicts growth rate is the ratio between 2nd to 1st moments of the degree distribution. We provide mathematical arguments to argue that certain results of our simulations hold in more general settings.

Article activity feed

  1. SciScore for 10.1101/2020.04.30.20081828: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.