Forecasting Novel Corona Positive Cases in India using Truncated Information: A Mathematical Approach

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Novel corona virus is declared as pandemic and India is struggling to control this from a massive attack of death and destruction, similar to the other countries like China, Europe, and the United States of America. India reported 2545 cases novel corona confirmed cases as of April 2, 2020 and out of which 191 cases were reported recovered and 72 deaths occurred. The first case of novel corona is reported in India on January 30, 2020. The growth in the initial phase is following exponential. In this study an attempt has been made to model the spread of novel corona infection. For this purpose logistic growth model with minor modification is used and the model is applied on truncated information on novel corona confirmed cases in India. The result is very exiting that till date predicted number of confirmed corona positive cases is very close to observed on. The time of point of inflexion is found in the end of the April, 2020 means after that the increasing growth will start decline and there will be no new case in India by the end of July, 2020.

Article activity feed

  1. SciScore for 10.1101/2020.04.29.20085175: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.