eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2

This article has been Reviewed by the following groups

Read the full article

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or nCovid-19) outbreak has become a huge public health issue due to its rapid transmission and global pandemic. Currently, there are no vaccines or drugs available for nCovid-19, hence early detection is crucial to help and manage the outbreak. Here, we report an in-house built biosensor device (eCovSens) and compare it with a commercial potentiostat for the detection of nCovid-19 spike antigen (nCovid-19Ag) in spiked saliva samples. A potentiostat based sensor was fabricated using fluorine doped tin oxide electrode (FTO) with gold nanoparticle (AuNPs) and immobilized with nCovid-19 monoclonal antibody (nCovid-19Ab) to measure change in the electrical conductivity. Similarly, eCovSens was used to measure change in electrical conductivity by immobilizing nCovid-19 Ab on screen printed carbon electrode (SPCE). The performances of both sensors were recorded upon interaction of nCovid-19Ab with its specific nCovid-19Ag. Under optimum conditions, the FTO based immunosensor and eCovSens displayed high sensitivity for detection of nCovid-19Ag, ranging from 1 fM to 1 μM. Our in-house developed device can successfully detect nCovid-19Ag at 10 fM concentration in standard buffer that is in close agreement with FTO/AuNPs sensor. The limit of detection (LOD) was found to be 90 fM with eCovSens and 120 fM with potentiostst in case of spiked saliva samples. The proposed portable eCovSens device can be used as a diagnostic tool for the rapid (within 10-30 s) detection of nCovid-19Ag traces directly in patient saliva in a non-invasive manner.

Article activity feed

  1. SciScore for 10.1101/2020.04.24.059204: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.