Non-Linear Fitting of Sigmoidal Growth Curves to predict a maximum limit to the total number of COVID-19 cases in the United States

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

In the present work is used non-linear fitting of the “Gompert” and “Logistic” growth models to the number of total COVID-19 cases from the United States as a country and individually by states. The methodology allowed us to estimate that the maximum limit for the total number of cases of COVID-19 patients such as those registered with the World Health Organization will be approximately one million and one hundred thousand cases to the United States. Up to 04/19/20 the models indicate that United States reached 70% of this maximum number of “total cases” and the United States will reach 95% of this limit by 05/14/2020. The application of the nonlinear fitting of growth curves to the individual data of each American state showed that only 25% of them did not reach, on 04/19/20, the percentage of 59% of the maximum limit of “total cases” and that 17 of the 50 states still will not have reached 95% of that limit on 05/14/20.

Article activity feed

  1. SciScore for 10.1101/2020.04.22.20074898: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.