Estimating COVID-19 Prevalence in the United States: A Sample Selection Model Approach

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Background

Public health efforts to determine population infection rates from coronavirus disease 2019 (COVID-19) have been hampered by limitations in testing capabilities and the large shares of mild and asymptomatic cases. We developed a methodology that corrects observed positive test rates for non-random sampling to estimate population infection rates across U.S. states from March 31 to April 7.

Methods

We adapted a sample selection model that corrects for non-random testing to estimate population infection rates. The methodology compares how the observed positive case rate vary with changes in the size of the tested population, and applies this gradient to infer total population infection rates. Model identification requires that variation in testing rates be uncorrelated with changes in underlying disease prevalence. To this end, we relied on data on day-to-day changes in completed tests across U.S. states for the period March 31 to April 7, which were primarily influenced by immediate supply-side constraints. We used this methodology to construct predicted infection rates across each state over the sample period. We also assessed the sensitivity of the results to controls for state-specific daily trends in infection rates.

Results

The median population infection rate over the period March 31 to April 7 was 0.9% (IQR 0.64 1.77). The three states with the highest prevalence over the sample period were New York (8.5%), New Jersey (7.6%), and Louisiana (6.7%). Estimates from mod-els that control for state-specific daily trends in infection rates were virtually identical to the baseline findings. The estimates imply a nationwide average of 12 population infections per diagnosed case. We found a negative bivariate relationship (corr. = -0.51) between total per capita state testing and the ratio of population infections per diagnosed case.

Interpretation

The effectiveness of the public health response to the coronavirus pandemic will depend on timely information on infection rates across different regions. With increasingly available high frequency data on COVID-19 testing, our methodology could be used to estimate population infection rates for a range of countries and subnational districts. In the United States, we found widespread undiagnosed COVID-19 infection. Expansion of rapid diagnostic and serological testing will be critical in preventing recurrent unobserved community transmission and identifying the large numbers individuals who may have some level of viral immunity.

Funding

Social Sciences and Humanities Research Council.

Article activity feed

  1. SciScore for 10.1101/2020.04.20.20072942: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    The high proportion of asymptomatic and mild cases coupled with limitations in laboratory testing capacity has created large uncertainty regarding the extent of the COVID-19 outbreak among the general population. As a result, key elements of virus’ clinical and epidemiological characteristics remain poorly understood. This uncertainty has also created significant challenges to policymakers who must trade off the potential benefits from non-pharmaceutical interventions aimed at curbing local transmission against their substantial economic and social costs. A number of recent studies have sought to estimate COVID-19 disease prevalence and mortality in the United States and internationally [21–26]. One approach has been based on variants of the Susceptible Infectious Removed (SIR) model, in which parameters are “calibrated” to the specific characteristics of the SARS-CoV-2 pandemic to estimate current and future infections. A challenge for this approach is the large uncertainty regarding the relevant parameter values for the virus, and the fact that the parameter values will evolve as societies take different measures to reduce transmission. Other research has relied on Bayesian modelling to infer past disease prevalence from observed COVID-19 deaths, and apply SIR models to forecast current infection rates. This approach requires fewer assumptions regarding the underlying parameter values. Nevertheless, because these models ‘scale up’ observed deaths to estimate population infe...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.