Understanding the Collective Responses of Populations to the COVID-19 Pandemic in Mainland China
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Timely information acquisition and stay-at-home measures have been considered as two effective steps that every person could take to help contain the coronavirus (COVID-19) pandemic. From the perspectives of information and mobility, this work aims at evaluating to what degree the massive population has responded to the emergencies of the COVID-19 pandemic in China. Using the real-time and historical data collected from the Baidu Maps and Baidu search engines, we confirm the strong correlation between the local pandemic situation in every major Chinese city and the population inflows from Wuhan between 1 January and 23 January 2020. We further evidence that, in cities under more critical situations, people are likely to engage COVID-19-related searches more frequently, while they are not likely to escape from the cities. Finally, the correlation analysis using search and mobility data shows that well-informed individuals are likely to travel less, even while the overall travel demands are low compared to the historical records. Partial correlation analysis has been conducted to test the significance of these observations with respect to other controlling factors.
Article activity feed
-
SciScore for 10.1101/2020.04.20.20068676: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2020.04.20.20068676: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
-
-