Nature of transmission of Covid19 in India

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

We examine available data on the number of individuals infected by the Covid-19 virus, across several different states in India, over the period January 30, 2020 to April 10, 2020. It is found that the growth of the number of infected individuals N ( t ) can be modeled across different states with a simple linear function N ( t ) = γ + αt beyond the date when reasonable number of individuals were tested (and when a countrywide lockdown was imposed). The slope α is different for different states. Following recent work by Notari (arxiv:2003.12417), we then consider the dependency of the α for different states on the average maximum and minimum temperatures, the average relative humidity and the population density in each state. It turns out that like other countries, the parameter α , which determines the rate of rise of the number of infected individuals, seems to have a weak correlation with the average maximum temperature of the state. In contrast, any significant variation of α with humidity or minimum temperature seems absent with almost no meaningful correlation. Expectedly, α increases (slightly) with increase in the population density of the states; however, the degree of correlation here too is negligible. These results seem to barely suggest that a natural cause like a hot summer (larger maximum temperatures) may contribute towards reducing the transmission of the virus, though the role of minimum temperature, humidity and population density remains somewhat obscure from the inferences which may be drawn from presently available data.

Article activity feed

  1. SciScore for 10.1101/2020.04.14.20065821: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.