Ancestry-Specific Predisposing Germline Variants in Cancer

Read the full article



Cancer risk differs across ancestries and these differences may result from differing prevalence of inherited genetic predisposition. Yet, most germline genomic studies performed to date have focused on individuals of European ancestry. Ancestry-specific analyses of germline genomes are required to inform cancer genetic risk and prognosis for each ancestral group. Here, we investigate potentially germline pathogenic variants in cancer predisposition genes (CPG) and their somatic effects in patients across diverse ancestral backgrounds.


We performed a retrospective analysis of germline genomic data of 9,899 patients from 33 cancer types generated by The Cancer Genome Atlas (TCGA) project along with matching somatic genomic and transcriptomic data. By collapsing pathogenic and likely pathogenic variants to the gene level, we analyzed the association between variants in CPGs and cancer types within each ancestry. We also identified ancestry- specific predisposing variants and their associated somatic two-hit events and gene expression levels.


Recent genetic ancestry analysis classified the cohort of 9,899 cancer cases into individuals of primarily European, (N = 8,184, 82.7%), African (N = 966, 9.8%), East Asian (N = 649, 6.6%), South Asian (N=48, 0.5%), Native/Latin American (N=41, 0.4%), and admixed (N=11, 0.1%) ancestries. In the African ancestry, we discovered a potentially novel association of BRCA2 in lung squamous cell carcinoma (OR = 41.4 [95% CI, 6.1-275.6]; FDR = 0.002) along with the previously identified association of BRCA2 in ovarian serous cystadenocarcinoma (OR=8.5 [95% CI, 1.5-47.4]; FDR=0.045). Similarly, in the East Asian ancestry, we discovered one previously known association of BRIP1 in stomach adenocarcinoma (OR=12.8 [95% CI, 1.8-90.84]; FDR=0.038). Rare variant burden analysis further identified 7 suggestive associations for cancer-gene pairs in African ancestry individuals previously well described in European ancestry including SDHB in pheochromocytoma and paraganglioma, ATM in prostate adenocarcinoma, VHL in kidney renal clear cell carcinoma, FH in kidney renal papillary cell carcinoma, and PTEN in uterine corpus endometrial carcinoma. Loss of heterozygosity was identified for 7 out of the 15 African ancestry carriers of predisposing variants. Further, tumors from the SDHB or BRCA2 carriers showed simultaneous allelic specific expression and low gene expression of their respective affected genes; and FH splice-site variant carriers showed mis-splicing of FH .


While several predisposing genes are shared across patients, many pathogenic variants are found to be ancestry-specific and trigger somatic effects. Analysis of larger diverse ancestries genomic cohorts are required to pinpoint ancestry- specific genetic predisposition to inform personalized diagnosis and screening strategies.

Article activity feed