Optimal Control applied to a SEIR model of 2019-nCoV with social distancing

This article has been Reviewed by the following groups

Read the full article

Abstract

Does the implementation of social distancing measures have merit in controlling the spread of the novel coronavirus? In this study, we develop a mathematical model to explore the effects of social distancing on new disease infections. Mathematical analyses of our model indicate that successful eradication of the disease is strongly dependent on the chosen preventive measure. Numerical computations of the model solution demonstrate that the ability to flatten the curve becomes easier as social distancing is strictly enforced. Based on our model, we also formulate an optimal control problem and solve it using Pontryagin’s Maximum Principle and an efficient numerical iterative method. Our numerical results of an optimal 2019-nCoV treatment protocol that yields a minimum disease burden from this disease indicates that social distancing is vitally important.

Article activity feed

  1. SciScore for 10.1101/2020.04.10.20061069: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a protocol registration statement.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.