COVID-19: Recovering estimates of the infected fatality rate during an ongoing pandemic through partial data

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

In an ongoing epidemic, the case fatality rate is not a reliable estimate of a disease’s severity. This is particularly so when a large share of asymptomatic or pauci-symptomatic patients escape testing, or when overwhelmed healthcare systems are forced to limit testing further to severe cases only. By leveraging data on COVID-19, we propose a novel way to estimate a disease’s infected fatality rate, the true lethality of the disease, in the presence of sparse and partial information. We show that this is feasible when the disease has turned into a pandemic and data comes from a large number of countries, or regions within countries, as long as testing strategies vary sufficiently. For Italy, our method estimates an IFR of 1.1% (95% CI: 0.2% – 2.1%), which is strongly in line with other methods. At the global level, our method estimates an IFR of 1.6% (95% CI: 1.1% – 2.1%). This method also allows us to show that the IFR varies according to each country’s age structure and healthcare capacity.

Article activity feed

  1. SciScore for 10.1101/2020.04.10.20060764: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.