Effectiveness of quarantine measure on transmission dynamics of COVID-19 in Hong Kong

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The rapid expansion of COVID-19 has caused a global pandemic. Although quarantine measures have been used widely, the critical steps among them to suppress the outbreak without a huge social-economic loss remain unknown. Hong Kong, unlike other regions in the world, had a massive number of travellers from Mainland China during the early expansion period, and yet the spread of virus has been relatively limited. Understanding the effect of control measures to reduce the transmission in Hong Kong can improve the control of the virus spreading.

We have developed a susceptible-exposed-infectious-quarantined-recovered (SEIQR) meta-population model that can stratify the infections into imported and subsequent local infections, and therefore to obtain the control effects on transmissibility in a region with many imported cases. We fitted the model to both imported and local confirmed cases with symptom onset from 18 January to 29 February 2020 in Hong Kong with daily transportation data and the transmission dynamics from Wuhan and Mainland China.

The model estimated that the reproductive number was dropped from 2.32 to 0.76 (95% CI, 0.66 to 0.86) after an infected case was estimated to be quarantined half day before the symptom onset, corresponding to the incubation time of 5.43 days (95% CI, 1.30-9.47). If the quarantine happened about one day after the onset, community spread would be likely to occur, indicated by the reproductive number larger than one. The results suggest that the early quarantine for a suspected case before the symptom onset is a key factor to suppress COVID-19.

Article activity feed

  1. SciScore for 10.1101/2020.04.09.20059006: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.