A simulated single ventilator/dual patient ventilation strategy for acute respiratory distress syndrome during the COVID-19 pandemic
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
The potential for acute shortages of ventilators at the peak of the COVID-19 pandemic has raised the possibility of needing to support two patients from a single ventilator. To provide a system for understanding and prototyping designs, we have developed a mathematical model of two patients supported by a mechanical ventilator. We propose a standard set-up where we simulate the introduction of T-splitters to supply air to two patients and a modified set-up where we introduce a variable resistance in each inhalation pathway and one-way valves in each exhalation pathway. Using the standard set-up, we demonstrate that ventilating two patients with mismatched lung compliances from a single ventilator will lead to clinically significant reductions in tidal volume in the patient with the lowest respiratory compliance. Using the modified set-up, we demonstrate that it could be possible to achieve the same tidal volumes in two patients with mismatched lung compliances, and we show that the tidal volume of one patient can be manipulated independently of the other. The results indicate that, with appropriate modifications, two patients could be supported from a single ventilator with independent control of tidal volumes.
Article activity feed
-
SciScore for 10.1101/2020.04.07.20056309: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources 16 Implementation: We implemented the simulations using MathWork’s Simscape (Simulink v4.8) Foundational Blocks and the tests were run via MATAB R2020a scripts and functions. Simulinksuggested: (Simulink, RRID:SCR_014744)Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues …
SciScore for 10.1101/2020.04.07.20056309: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources 16 Implementation: We implemented the simulations using MathWork’s Simscape (Simulink v4.8) Foundational Blocks and the tests were run via MATAB R2020a scripts and functions. Simulinksuggested: (Simulink, RRID:SCR_014744)Results from OddPub: Thank you for sharing your code and data.
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
-
