Delivery of CPAP respiratory support for COVID-19 using repurposed technologies

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The COVID-19 pandemic has placed a dramatic increase in demand on healthcare providers to provide respiratory support for patients with moderate to severe symptoms. In conjunction, the pandemic has challenged existing supply-chains to meet demands for medical equipment and resources. In response to these challenges, we report our work to repurpose two existing non-invasive ventilation (NIV) systems to provide solutions for the delivery of oxygen-enriched CPAP ventilation which are inherently resource and oxygen-efficient. We consider adaptation of CPAP systems typically used for sleep apnoea, together with a new Venturi-valve design which can be readily produced through 3D printing. Our aim in both cases was to support Positive end-expiratory pressure (PEEP) of ≥10cmH 2 O while achieving ≥40% FiO2. This supports a crucial part in the patient pathway for COVID-19 treatment, helping to provide early respiratory support prior to invasive ventilation options in the ICU.

Article activity feed

  1. SciScore for 10.1101/2020.04.06.20055665: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.