Analysis and Applications of Adaptive Group Testing Methods for COVID-19
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Testing strategies for Covid-19 to maximize number of people tested are urgently needed. Recently, it has been demonstrated that RT-PCR has the sensitivity to detect one positive case in a mixed sample of 32 cases [12], In this paper we propose adaptive group testing strategies based on generalized binary splitting (CBS) [5], where we restrict the group test to the largest group that can be used. The method starts by choosing a group from the population to be tested, performing a test on the combined sample from the entire group, and progressively splitting the group further into subgroups. Compared to individual testing at 4% prevalence, we save 74%; at 1% we save 91%; and at .1% we save 98% of tests. We analyze the number of times each sample is used and show that the method is still efficient if we resort to testing a case individually if the sample is running low.
In addition we recommend clinical screening to filter out individuals with symptoms and show this leaves us with a population with lower prevalence. Our approach is particularly applicable to vulnerable confined populations such as nursing homes, prisons, military ships and cruise ships.
Article activity feed
-
SciScore for 10.1101/2020.04.05.20050245: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank…
SciScore for 10.1101/2020.04.05.20050245: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
-