Cyclic exit strategies to suppress COVID-19 and allow economic activity

This article has been Reviewed by the following groups

Read the full article

Abstract

Many countries have applied lockdown that helped suppress COVID-19, but with devastating economic consequences. Here we propose exit strategies from lockdown that provide sustainable, albeit reduced, economic activity. We use mathematical models to show that a cyclic schedule of 4-day work and 10-day lockdown, or similar variants, can prevent resurgence of the epidemic while providing part-time employment. The cycle pushes the reproduction number R below one by reduced exposure time and by exploiting the virus latent period: those infected during work days reach peak infectiousness during lockdown days. The number of work days can be adapted in response to observations. Throughout, full epidemiological measures need to continue including hygiene, physical distancing, compartmentalization, testing and contact tracing. This conceptual framework, when combined with other interventions to control the epidemic, can offer the beginnings of predictability to many economic sectors.

Article activity feed

  1. SciScore for 10.1101/2020.04.04.20053579: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.