How will this continue? Modelling interactions between the COVID-19 pandemic and policy responses

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Much of the uncertainty about the progression of the COVID-19 pandemic stems from questions about when and how non-pharmaceutical interventions (NPI) by governments, in particular social distancing measures, are implemented, to what extent the population complies with these measures, and how compliance changes through time. Further uncertainty comes from a lack of knowledge of the potential effects of removing interventions once the epidemic is declining. By combining an epidemiological model of COVID-19 for the United Kingdom with simple sub-models for these societal processes, this study aims to shed light on the conceivable trajectories that the pandemic might follow over the next 1.5 years. We show strong improvements in outcomes if governments review NPI more frequently whereas, in comparison, the stability of compliance has surprisingly small effects on cumulative mortality. Assuming that mortality does considerably increase once a country’s hospital capacity is breached, we show that the inherent randomness of societal processes can lead to a wide range of possible outcomes, both in terms of disease dynamics and mortality, even when the principles according to which policy and population operate are identical.. Our model is easily modified to take other aspects of the socio-pandemic interaction into account.

Article activity feed

  1. SciScore for 10.1101/2020.03.30.20047597: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.