Development and external validation of a prognostic multivariable model on admission for hospitalized patients with COVID-19

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

COVID-19 pandemic has developed rapidly and the ability to stratify the most vulnerable patients is vital. However, routinely used severity scoring systems are often low on diagnosis, even in non-survivors. Therefore, clinical prediction models for mortality are urgently required.

Methods

We developed and internally validated a multivariable logistic regression model to predict inpatient mortality in COVID-19 positive patients using data collected retrospectively from Tongji Hospital, Wuhan (299 patients). External validation was conducted using a retrospective cohort from Jinyintan Hospital, Wuhan (145 patients). Nine variables commonly measured in these acute settings were considered for model development, including age, biomarkers and comorbidities. Backwards stepwise selection and bootstrap resampling were used for model development and internal validation. We assessed discrimination via the C statistic, and calibration using calibration-in-the-large, calibration slopes and plots.

Findings

The final model included age, lymphocyte count, lactate dehydrogenase and SpO 2 as independent predictors of mortality. Discrimination of the model was excellent in both internal (c=0·89) and external (c=0·98) validation. Internal calibration was excellent (calibration slope=1). External validation showed some over-prediction of risk in low-risk individuals and under-prediction of risk in high-risk individuals prior to recalibration. Recalibration of the intercept and slope led to excellent performance of the model in independent data.

Interpretation

COVID-19 is a new disease and behaves differently from common critical illnesses. This study provides a new prediction model to identify patients with lethal COVID-19. Its practical reliance on commonly available parameters should improve usage of limited healthcare resources and patient survival rate.

Funding

This study was supported by following funding: Key Research and Development Plan of Jiangsu Province (BE2018743 and BE2019749), National Institute for Health Research (NIHR) (PDF-2018-11-ST2-006), British Heart Foundation (BHF) (PG/16/65/32313) and Liverpool University Hospitals NHS Foundation Trust in UK.

Research in context

Evidence before this study

Since the outbreak of COVID-19, there has been a pressing need for development of a prognostic tool that is easy for clinicians to use. Recently, a Lancet publication showed that in a cohort of 191 patients with COVID-19, age, SOFA score and D-dimer measurements were associated with mortality. No other publication involving prognostic factors or models has been identified to date.

Added value of this study

In our cohorts of 444 patients from two hospitals, SOFA scores were low in the majority of patients on admission. The relevance of D-dimer could not be verified, as it is not included in routine laboratory tests. In this study, we have established a multivariable clinical prediction model using a development cohort of 299 patients from one hospital. After backwards selection, four variables, including age, lymphocyte count, lactate dehydrogenase and SpO 2 remained in the model to predict mortality. This has been validated internally and externally with a cohort of 145 patients from a different hospital. Discrimination of the model was excellent in both internal (c=0·89) and external (c=0·98) validation. Calibration plots showed excellent agreement between predicted and observed probabilities of mortality after recalibration of the model to account for underlying differences in the risk profile of the datasets. This demonstrated that the model is able to make reliable predictions in patients from different hospitals. In addition, these variables agree with pathological mechanisms and the model is easy to use in all types of clinical settings.

Implication of all the available evidence

After further external validation in different countries the model will enable better risk stratification and more targeted management of patients with COVID-19. With the nomogram, this model that is based on readily available parameters can help clinicians to stratify COVID-19 patients on diagnosis to use limited healthcare resources effectively and improve patient outcome.

Article activity feed

  1. SciScore for 10.1101/2020.03.28.20045997: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board StatementIACUC: The protocol was approved by the local Institutional Ethics Committee (Approval Number: KY-2020-10.02).
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    This study has several limitations. At this stage in the global outbreak of COVID-19, no published studies have developed and validated prediction models for assessing the probability of mortality in hospitalized patients. A most recent report proposed SOFA score, age and D-dimers as the important prognostic markers7. However, in our cohorts, the SOFA score was very low although there is statistical difference between survivors and non-survivors. This difference may be due to some patients being treated in other hospitals prior to transfer in the previously reported study7. In addition, SOFA score relies on blood gas analysis, which cannot be easily done continually, in clinics and in under-resourced settings, thus making it difficult for clinicians to use readily. In addition, since D-dimer is not routinely requested, too many patients in our cohorts had no test performed, making it is difficult for us to verify published results. Organ-specific injury markers were not included in the model, including cTnI due to missing data (not routinely measured), as well as ALT and BUN due to high co-linearity with other variables within the model. Therefore, the choice of potential prognostic factors could not be informed by a systematic review of existing prediction models. Similarly, there are no published estimates of discrimination and calibration to compare this study to. Additionally, the event rate is limited, especially in the independent dataset where at least 100 events would...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.