Machine Learning Approach for Confirmation of COVID-19 Cases: Positive, Negative, Death and Release

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

In recent days, Covid-19 coronavirus has been an immense impact on social, economic fields in the world. The objective of this study determines if it is feasible to use machine learning method to evaluate how much prediction results are close to original data related to Confirmed-Negative-Released-Death cases of Covid-19. For this purpose, a verification method is proposed in this paper that uses the concept of Deep-learning Neural Network. In this framework, Long short-term memory (LSTM) and Gated Recurrent Unit (GRU) are also assimilated finally for training the dataset and the prediction results are tally with the results predicted by clinical doctors. The prediction results are validated against the original data based on some predefined metric. The experimental results showcase that the proposed approach is useful in generating suitable results based on the critical disease outbreak. It also helps doctors to recheck further verification of virus by the proposed method. The outbreak of Coronavirus has the nature of exponential growth and so it is difficult to control with limited clinical persons for handling a huge number of patients with in a reasonable time. So it is necessary to build an automated model, based on machine learning approach, for corrective measure after the decision of clinical doctors. It could be a promising supplementary confirmation method for frontline clinical doctors. The proposed method has a high prediction rate and works fast for probable accurate identification of the disease. The performance analysis shows that a high rate of accuracy is obtained by the proposed method.

Article activity feed

  1. SciScore for 10.1101/2020.03.25.20043505: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.