Automatic Identification of SARS Coronavirus using Compression-Complexity Measures

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Finding vaccine or specific antiviral treatment for global pandemic of virus diseases (such as the ongoing COVID-19) requires rapid analysis, annotation and evaluation of metagenomic libraries to enable a quick and efficient screening of nucleotide sequences. Traditional sequence alignment methods are not suitable and there is a need for fast alignment-free techniques for sequence analysis. Information theory and data compression algorithms provide a rich set of mathematical and computational tools to capture essential patterns in biological sequences. In 2013, our research group (Nagaraj et al., Eur. Phys. J. Special Topics 222(3-4), 2013) has proposed a novel measure known as Effort-To-Compress (ETC) based on the notion of compression-complexity to capture the information content of sequences. In this study, we propose a compression-complexity based distance measure for automatic identification of SARS coronavirus strains from a set of viruses using only short fragments of nucleotide sequences. We also demonstrate that our proposed method can correctly distinguish SARS-CoV-2 from SARS-CoV-1 viruses by analyzing very short segments of nucleotide sequences. This work could be extended further to enable medical practitioners in automatically identifying and characterizing SARS coronavirus strain in a fast and efficient fashion using short and/or incomplete segments of nucleotide sequences. Potentially, the need for sequence assembly can be circumvented.

Note

The main ideas and results of this research were first presented at the International Conference on Nonlinear Systems and Dynamics ( CNSD-2013 ) held at Indian Institute of Technology, Indore, December 12, 2013. In this manuscript, we have extended our preliminary analysis to include SARS-CoV-2 virus as well.

Article activity feed

  1. SciScore for 10.1101/2020.03.24.006007: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • No conflict of interest statement was detected. If there are no conflicts, we encourage authors to explicit state so.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.