Development and utilization of an intelligent application for aiding COVID-19 diagnosis

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

COVID-19 has been spreading globally since emergence, but the diagnostic resources are relatively insufficient.

Results

In order to effectively relieve the resource deficiency of diagnosing COVID-19, we developed a machine learning-based diagnosis model on basis of laboratory examinations indicators from a total of 620 samples, and subsequently implemented it as a COVID-19 diagnosis aid APP to facilitate promotion.

Conclusions

External validation showed satisfiable model prediction performance (i.e., the positive predictive value and negative predictive value was 86.35% and 84.62%, respectively), which guarantees the promising use of this tool for extensive screening.

Article activity feed

  1. SciScore for 10.1101/2020.03.18.20035816: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board StatementIRB: Patients and information collection: We have complied with all relevant ethical regulations for work with human subjects and the studies were approved by the Clinical Trials and Biomedical Ethics Committee of West China Hospital, Sichuan University.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.