Roles of meteorological conditions in COVID-19 transmission on a worldwide scale

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The novel coronavirus (SARS-CoV-2/2019-nCoV) identified in Wuhan, China, in December 2019 has caused great damage to public health and economy worldwide with over 140,000 infected cases up to date. Previous research has suggested an involvement of meteorological conditions in the spread of droplet-mediated viral diseases, such as influenza. However, as for the recent novel coronavirus, few studies have discussed systematically about the role of daily weather in the epidemic transmission of the virus. Here, we examine the relationships of meteorological variables with the severity of the outbreak on a worldwide scale. The confirmed case counts, which indicates the severity of COVID-19 spread, and four meteorological variables, i.e., air temperature, relative humidity, wind speed, and visibility, were collected daily between January 20 and March 11 (52 days) for 430 cities and districts all over China, 21 cities/provinces in Italy, 21 cities/provinces in Japan, and 51 other countries around the world. Four different time delays of weather (on the day, 3 days ago, 7 days ago, and 14 days ago) as to the epidemic situation were taken for modeling and we finally chose the weather two weeks ago to model against the daily epidemic situation as its correlated with the outbreak best. Taken Chinese cities as a discovery dataset, it was suggested that temperature, wind speed, and relative humidity combined together could best predict the epidemic situation. The meteorological model could well predict the outbreak around the world with a high correlation ( r 2 >0.6) with the real data. Using this model, we further predicted the possible epidemic situation in the future 12 days in several high-latitude cities with potential outbreak. This model could provide more information for government’s future decisions on COVID-19 outbreak control.

Article activity feed

  1. SciScore for 10.1101/2020.03.16.20037168: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.