Differential Antibody Recognition by Novel SARS-CoV-2 and SARS-CoV Spike Protein Receptor Binding Domains: Mechanistic Insights and Implications for the Design of Diagnostics and Therapeutics

This article has been Reviewed by the following groups

Read the full article

Abstract

The appearance of the novel betacoronavirus SARS-CoV-2 represents a major threat to human health, and its diffusion around the world is causing dramatic consequences. The knowledge of the 3D structures of SARS-CoV-2 proteins can facilitate the development of therapeutic and diagnostic molecules. Specifically, comparative analyses of the structures of SARS-CoV-2 proteins and homologous proteins from previously characterized viruses, such as SARS-CoV, can reveal the common and/or distinctive traits that underlie the mechanisms of recognition of cell receptors and of molecules of the immune system.

Herein, we apply our recently developed energy-based methods for the prediction of antibody-binding epitopes and protein-protein interaction regions to the Receptor Binding Domain (RBD) of the Spike proteins from SARS-CoV-2 and SARS-CoV. Our analysis focusses only on the study of the structure of RBDs in isolation, without making use of any previous knowledge of binding properties. Importantly, our results highlight structural and sequence differences among the regions that are predicted to be immunoreactive and bind/elicit antibodies. These results provide a rational basis to the observation that several SARS-CoV RDB-specific monoclonal antibodies fail to appreciably bind the SARS-CoV-2 counterpart. Furthermore, we correctly identify the region of SARS-CoV-2 RBD that is engaged by the cell receptor ACE2 during viral entry into host cells.

The data, sequences and structures we present here can be useful for the development of novel therapeutic and diagnostic interventions.

Article activity feed

  1. SciScore for 10.1101/2020.03.13.990267: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • No conflict of interest statement was detected. If there are no conflicts, we encourage authors to explicit state so.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.