Spatially Explicit Modeling of 2019-nCoV Epidemic Trend Based on Mobile Phone Data in Mainland China
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
As of February 11, 2020, all prefecture-level cities in mainland China have reported confirmed cases of 2019 novel coronavirus (2019-nCoV), but the city-level epidemical dynamics is unknown. The aim of this study is to model the current dynamics of 2019-nCoV at city level and predict the trend in the next 30 days under three possible scenarios in mainland China. We developed a spatially explicit epidemic model to consider the unique characteristics of the virus transmission in individual cities. Our model considered that the rate of virus transmission among local residents is different from those with Wuhan travel history due to the self-isolation policy. We introduced a decay rate to quantify the effort of each city to gradually control the disease spreading. We used mobile phone data to obtain the number of individuals in each city who have travel history to Wuhan. This city-level model was trained using confirmed cases up to February 10, 2020 and validated by new confirmed cases on February 11, 2020. We used the trained model to predict the future dynamics up to March 12, 2020 under different scenarios: the current trend maintained, control efforts expanded, and person-to-person contact increased due to work resuming. We estimated that the total infections in mainland China would be 72172, 54348, and 149774 by March 12, 2020 under each scenario respectively. Under the current trend, all cities will show the peak point of daily new infections by February 21. This date can be advanced to February 14 with control efforts expanded or postponed to February 26 under pressure of work resuming. Except Wuhan that cannot eliminate the disease by March 12, our model predicts that 95.4%, 100%, and 75.7% cities will have no new infections by the end of February under three scenarios. The spatial pattern of our prediction could help the government allocate resources to cities that have a more serious epidemic in the next 30 days.
Article activity feed
-
SciScore for 10.1101/2020.02.09.20021360: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Our modeling work has several limitations. First, due to the limited prior knowledge for this sudden 2019-nCoV outbreak, the infection rate and recovery rate in this study are regarded as the same for different age groups, which may result in errors of predication for cities with different age structures. Second, the model parameters …
SciScore for 10.1101/2020.02.09.20021360: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Our modeling work has several limitations. First, due to the limited prior knowledge for this sudden 2019-nCoV outbreak, the infection rate and recovery rate in this study are regarded as the same for different age groups, which may result in errors of predication for cities with different age structures. Second, the model parameters were estimated using the reported confirmed cases that may be lower than the actual number of infections, so parameter estimation may not represent the real situation. Third, besides transmission between Wuhan and other cities, we do not consider other inter-city transmissions. Although the Chinese government strictly controlled the traffic between cities, the inter-city transmission may contribute to the epidemic dynamics in future days, especially during days of work resuming.
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
-