Incorporating Human Movement Data to Improve Epidemiological Estimates for 2019-nCoV

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Estimating the key epidemiological features of the novel coronavirus (2019-nCoV) epidemic proves to be challenging, given incompleteness and delays in early data reporting, in particular, the severe under-reporting bias in the epicenter, Wuhan, Hubei Province, China. As a result, the current literature reports widely varying estimates. We developed an alternative geo-stratified debiasing estimation framework by incorporating human mobility with case reporting data in three stratified zones, i.e., Wuhan, Hubei Province excluding Wuhan, and mainland China excluding Hubei. We estimated the latent infection ratio to be around 0.12% (18,556 people) and the basic reproduction number to be 3.24 in Wuhan before the city’s lockdown on January 23, 2020. The findings based on this debiasing framework have important implications to prioritization of control and prevention efforts.

One Sentence Summary

A geo-stratified debiasing approach incorporating human movement data was developed to improve modeling of the 2019-nCoV epidemic.

Article activity feed

  1. SciScore for 10.1101/2020.02.07.20021071: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board StatementConsent: The human movement data is not available for sharing due to the constraint in the consent.
    IRB: This study was approved by the Biomedical Research Ethics Review Board of Chinese Academy of Sciences Institute of Automation (approval #IA-202001).
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Materials and Methods:
    Methods
    suggested: None

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a protocol registration statement.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.